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• The TOW2B Warhead Section 

Assembly (WSA) currently reacts 

violently when subjected to Slow 

Cook-Off at 6ºF/hour heating rate

• US Army and GD-OTS developed 

thermal models to assist design 

engineers in upgrading TOW2B 

warhead

• During this effort, a reconstructive 

b-d phase change in HMX was 

applied to thermal model for LX-14

• Inclusion of phase change greatly 

improved the accuracy of the 

thermal model
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• SolidWorks Simulator used for all models presented in 

this briefing

 Single Phase Finite Element Modeling Code

• Standardized modeling methodology

 Solid model of EFP simplified to reduce calculation time

 Initial temperature in all calculations

 Convection is the primary mechanism used to heat EFP

 Radiation also plays a small role in heating

 Self-heating properties of explosive modeled using Arrhenius 

rate equation.

Baseline Modeling Methodology
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Simplify Solid Model

De-Feature

• The solid model used for a calculation is simplified to 

reduce the calculation time

 Assemblies that are made from the same material are combined

 Features such as fillets, chamfers are eliminated

 Symmetry used where possible
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Thermal Loads

• Convection and radiation 

applied to all exterior 

surfaces

 3.0W/m·K convection 

applied to Manifold Simulant 

and Case

 2.5W/m·K convection 

applied to Liner

 Shape factor for applying 

radiation was 0.15 for all 

surfaces

 Values were determined as 

model was calibrated to test 

data

Manifold
Convection = 3.0W/m2 K
Emissivity = 0.20

Case
Convection = 3.0W/m2 K
Emissivity = 0.74

Liner
Convection = 2.5W/m2 K
Emissivity = 0.14

Ambient (bulk) temperature 272F 
+ 6F/hour until reaction occurs

http://intranet/C8/GD Identity Standards/Image Library/OTSlogo2col.gif
http://intranet/C8/GD Identity Standards/Image Library/OTSlogo2col.gif


Contact Resistance

• All components 

modeled as touching 

in solid model

• However, in reality 

there are contact 

resistances between 

components based 

on:

– Tolerances (gaps)

– Adjacent materials

– Interstitial materials, 

such as adhesives

1 2

3

4

5

6 78

Gap Location Interface 

Material

Thickness 

(mm)

Resistance

(K/W)

1 Liner – Billet MEK+Poly 0.1016 0.12

2 Billet Slope – Case Slope Charge Bonder 0.0508 0.05

3 Billet OD – Case ID Charge Bonder 0.1016 0.10

4 Billet Top – Case Top Charge Bonder 0.7366 18.05

5 Manifold – Case Top Part Touching - 47.62

6 Manifold – Case Flat Air 0.3048 220.25

7 Manifold OD – Case ID Air 0.3302 297.65

8 Manifold OD –Billet ID Air 0.2921 219.16
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Material Properties

Property Units LX-14 Stainless 

Steel

Aluminum Tantalum

Density g/cc 1.873 8.00 2.70 16.60

Emissivity - - 0.74 0.20 0.14

Thermal Conductivity W/m K 0.35 – 0.47 16.0 166.9 59.4

Specific Heat kJ/kg K 1.000 – 1.820 500.0 896 138.6

Activation Energy J/mol 2.206E+05 - - -

Heat of Reaction J/kg 5.95E+06 - - -

Pre-Exponential 1/s 5.00E+19 - - -
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Self Heating of Explosive

• An Arrhenius rate 

equation is used to 

calculate the self-

heating properties of 

the explosive as a 

function of 

temperature

• Activation Energy, 

Heat of Reaction and 

Pre-Exponential 

Factor are the kinetic 

constants

Heat Rate = r Q Z e
-E/RT

r =  Density

Q = Heat of Reaction

Z = Pre-Exponential Factor

E = Activation Energy

R = Universal Gas Constant

T = Absolute Temperature
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Initial Calculation Results
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• Initial calculation results accurately predict test results to 325ºF

• Slowing then occurs (3 tests shown), which model does not predict
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Phase Change in HMX

• Levitas1 study shows that HMX undergoes a 

reconstructive b-d phase change at 432K (318ºF) via a 

“virtual melting mechanism”

• Internal stress energy relaxed by phase change is 

28.866 kJ/kg

b phase

Pressure builds due to 

thermal expansion within a 

confined space, producing 

internal stresses

Melted HMX d phase

When HMX melts, the 

elevated pressure causes 

a change in the 

nucleation energy

The change in nucleation 

energy causes the HMX to 

immediately recrystallize 

into an unstressed d-phase
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Effects of Phase Change

• The reconstructive portion of the b-d phase 

change occurs at 432.6K (319ºF), which is 

0.6K above when the melting occurs

• It is assumed the entire phase change 

occurs within this 0.6K window

• Dividing the relaxed stress (28.866 kJ/kg) 

by 0.6 equals 48.110 kJ/kg·K - which are 

the units for Specific Heat

• A “step” is applied to Specific Heat of HMX 

between 323ºF and 324ºF

– 3K (5ºF) added to temperature to 

compensate for binders in LX-14, which 

produces a better match for the test data

• Levitas also reports that the density of 

HMX drops from 1.905 g/cc to 1.773 g/cc. 

Using the Rule of Mixtures, the density of 

HMX drops from 1.873 g/cc to 1.734 g/cc
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Results Including Phase Change
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Test 1 Reaction:  369.9

Test 3 Reaction:  375.9

Test 2 Reaction:  370.7

Modeled Reaction: 369.3

• Inclusion of HMX phase change provides a much more accurate 

prediction of SCO performance
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Conclusions

• SCO Test data showed the heating rate of the TOW2B 

EFP consistently slowed between 325ºF and 330ºF

• The slowing effect was not captured by thermal models 

being used at the time, resulting in under-prediction of air 

temperature and time required for reaction to occur

• A literature search revealed that HMX undergoes a phase 

change near the temperatures where the heating slowed

• Application of the phase change into the thermal model 

significantly improved the accuracy in predicting both time 

and temperature

• The phase change technique should be applicable to any 

pressed HMX-based explosive 
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