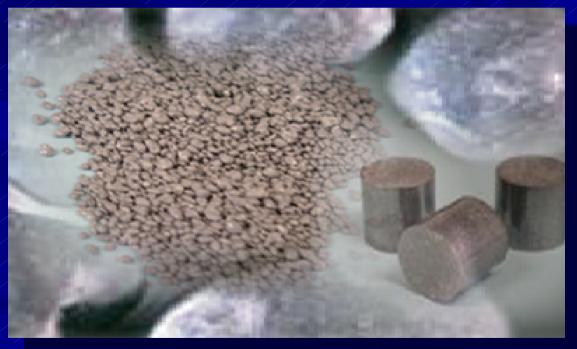
Brian Alexander

Manufacturing of the Thermobaric Explosive PBXIH-18 at Holston Army Ammunition Plant

Mr. Brian Alexander BAE Systems Holston Army Ammunition Plant Mr. Curtis Teague BAE Systems Holston Army Ammunition Plant

Acknowledgements


– Brooke Jones (BAE SYSTEMS)

- Curtis Teague (BAE SYSTEMS)
- Jim Owens (BAE SYSTEMS)
- Charles Smith (Technical Solutions)

Briefing Aims

Background
Program Objectives
Experimental
Production
Summary

Background

Thermobaric Explosives

- Higher sustained blast pressures
- Increased lethality in confined spaces

- Limited Manufacturing Capability for Thermobaric Explosives
 - Current processes are small-scale and expensive
- Explosive Formulation
 - PBXIH-18

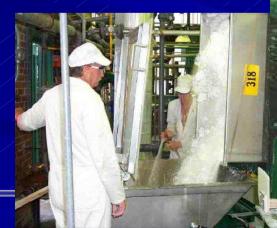
U. S. Navy Sponsored Program for PBXIH-18 Scale-Up

- NSWC Indian Head, Yorktown Detachment

Program Goals

PBXIH-18 Explosive

- Lab-Scale Process Development
 - Evaluations



- Water Replacement Fluid (WR Fluid)
- WR Recovery and Re-Use
- Elimination of Water from PBX Coating Technique
- Scale-up: Small Production Batch (≈ 300 pound)

PBX Processing at HSAAP

- Uses Solvent-Lacquering Technique
 - Explosive intermediates slurried in water
 - Polymer / plasticizer dispersed in solvent
 - Coating / processing cycle
 - Recovery / reuse of solvent
- Large-Scale Operation at HSAAP
 - 500 and 6,000 gallon capacities

6,000 gallon 7A Still

Processing PBXIH-18

Traditional Methods Incompatible with Thermobaric PBX

- Aluminum powder oxidized by water
- Safety issues significant at production-scale operations
- "Water Replacement" (WR) Fluid Evaluated
 - Non-reactive with metal powders
 - Fluidizing effect of water
 - Colorless, nonflammable liquid
 - Similar boiling point range as water

PBXIH-18 Process Development

- Phase I of U. S. Navy Program
 - Lab-scale process development
- Design of Experiments
 - Systematic evaluation of process parameters for PBXIH-18
 - Lab-scale replicates of HSAAP PBX production stills
 - Typical lab batch size of 1,000 grams
 - Evaluation of WR Fluid recycle
 - Evaluation of HMX / DOA Premix
- Analytical Properties on PBXIH-18 Lab Batches

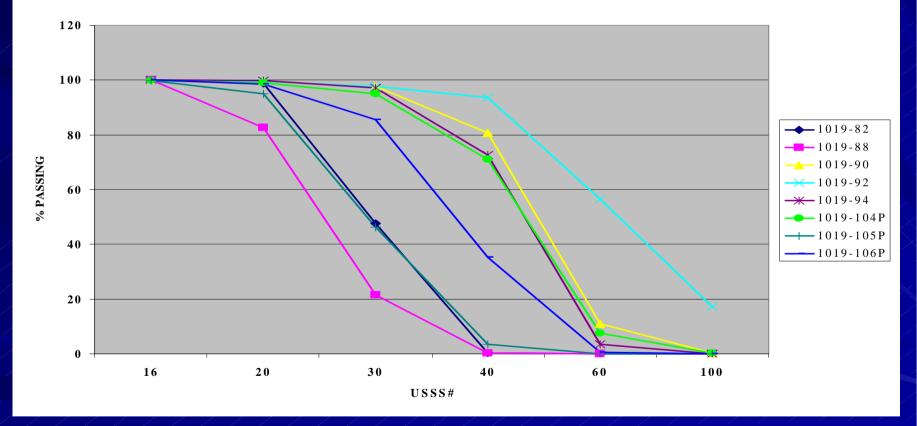
Lab PBX Still (13-Liter)

PBXIH-18 Process Development

Properties of PBXIH-18 Modified w/ Process Conditions – Granulation, Bulk Density, Press Density & Impact Sensitivity

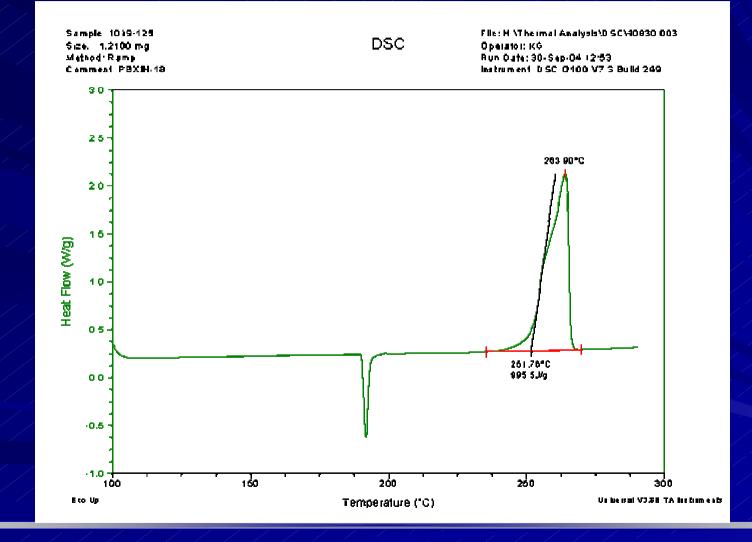
LABORATORY PROCESS DEVELOPMENT OF PBXIH-18

	Process	Impost			Cron	lation		
DDVIII 10		Impact		Granulation				
PBXIH-18	Condition	Sensitivity	Bulk Density	(Wt. % Passing USSS Sieve No.)				Pressed Density
Lab Batch #	No.	(cm)	(g/cc)	6	16	60	100	(g/cc)
1019-82	"A"	43.35	0.939	100	100	0	0	1.92
1019-88	''B''	39.81	0.999	100	100	0	0	1.92
1019-90	"C"	32.89	0.80	100	100	10.02	0.2	1.02
1019-90	C	52.89	0.89	100	100	10.02	0.2	1.93
1019-92	"D"	30.41	0.97	100	99.8	54.9	13.2	1.93
1019-94	"E"	30.31	0.965	100	100	4	0	1.94
/								
1019-104P	''F''	52.12	0.94	100	99.4	7.5	0.8	1.93
/								
1019-105P	''F''	58.48	0.98	100	99.9	0	0	1.94
1019-106P	''F''	56.23	0.98	100	99.8	0.3	0	1.94
1019-125PR	"G"	53.16	1.064	100	98.9	0	0	1.95


As Presented at 2004 IMEM Symposium

PBXIH-18 Process Development

Granulation Profiles of Various PBXIH-18 Lab Batches

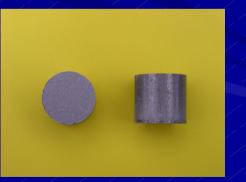

GRANULATION OF PBXIH-18 USING ADDITIONAL SCREENS

As Presented at 2004 IMEM Symposium

Differential Scanning Calorimetry of PBXIH-18

Ramp Rate of 3°C / min. (100-225 °C) & 1°C / min. (225-280 °C)

Findings from PBXIH-18 Process Development


- WR Fluid Effectively Recovered
 - Product generated using new and reclaimed WR Fluid were indistinguishable in properties
- HMX / DOA Premix
 - Data indicates impact sensitivity of PBXIH-18 was improved by the use of HMX / DOA Premix
- PBXIH-18 Exhibited Excellent Physical Characteristics
 - Granulation, Flow, Density, etc

BAE SYSTEMS

PBXIH-18

Bulk Powder and Pressed Pellets

Production Operations

PBXIH-18 Explosive

- Scale-up: small production batch (≈ 300 pound)
- Similar as process condition "E" as specified by Lab DOE
- Manufactured April 2005

Product Characteristics

Vacuum Still (500-gallon Capacity)

	Granulation % Passing USSS					<u>Impact, cm</u>					
	<u>Press</u> Density (g/cc)	<u>H2O</u> <u>%</u>	<u>VTS</u> (ml/mg) 48 Hrs.	<u>Coff. Of</u> Friction		<u>No.</u> <u>6</u>	<u>No. 8</u>	<u>No. 40</u>	<u>No. 70</u>	<u>PBXIH-</u> <u>18</u>	<u>Std.</u>
PBXIH-18-1	1.92	0.03	0.06	150	PBXIH-18-1	100	100	5	2	30.04	15

Qualification with PBXIH-18

Shoulder-launched Multipurpose Assault Weapon Light Anti-tank Weapon

Summary

WR Fluid was Effective for Thermobaric PBX Processing using HSAAP Infrastructure
Good Properties Demonstrated for PBXIH-18
PBXIH-18

Process development complete

Cost of Aluminized PBX Explosives

Dependent on recovery efficiency of WR Fluid

