Manfred Bohn

Insensitivity aspects of NC bonded and DNDA plasticizer containing gun propellants

Manfred A. Bohn and Dietmar Müller Fraunhofer-Institut für Chemische Technologie, ICT

2006 Insensitive Munitions & Energetic Materials Technology Symposium

Maintaining Performance and Enhanced and Survivability Throughout the Lifecycle

April 24-28, 2006

Bristol, UK

2006 Bohn / Titel 2

Fraunhofer

- Introduction
 Conventional GP versus new type gun propellants (NT-GP)
- LTC effect
- Formulations type, ingredients
- Performance data
- Results on thermal properties / sensitiveness
 adiabatic self heating cook-off sensitivity
 ageing behaviour
 mass loss at 70℃, 80℃ and 90℃
 heat generation rate at 60℃, 70℃, 80℃ and 90℃
- Results on operational properties shaped charge impact barrel erosivity
- Conclusion

2006 Bohn / 3

Introduction

Conventional gun propellants

NC based single base, double base, triple base performance enhancement by surface treatment

Semi nitramine gun propellants

NC bonded NC, RDX, plastizicer are nitrate ester based (sort of triple base GP)

New type gun propellants

```
NC bonded
NC, RDX, (+ CL20, FOX7,..), non nitrate ester plasticizer
elastomer bonded (thermoplastic, GAP, CAB,...)
binder, RDX (+ any X), plasticizer
```

2006 Bohn / 4

Fraunhofer Institut

ICT's New Type Gun Propellants (NT-GP)

NC bonded

NC, RDX, (+ CL20, FOX7,..), non-nitrate ester plasticizer

DNDA gun propellants

DNDA

recent plasticizer based on the n,(n+2)-Di Nitro - n,(n+2)-Di Aza group as energetic molecular part

2006 Bohn / 5

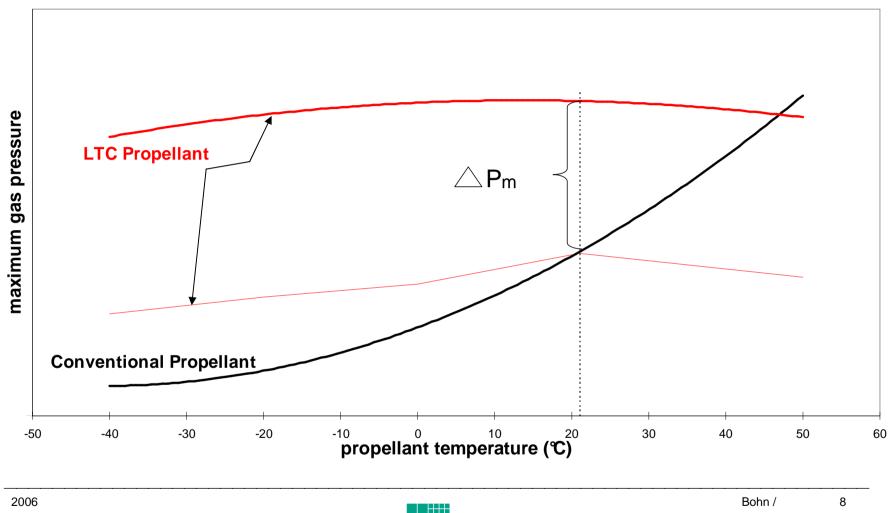
Fraunhofer Institut

- Introduction
 Conventional GP versus new type gun propellants (NT-GP)
- LTC effect
- Formulations type, ingredients
- Performance data
- Results on thermal properties / sensitiveness
 adiabatic self heating cook-off sensitivity
 ageing behaviour
 mass loss at 70℃, 80℃ and 90℃
 heat generation rate at 60℃, 70℃, 80℃ and 90℃
- Results on operational properties shaped charge impact barrel erosivity
- Conclusion

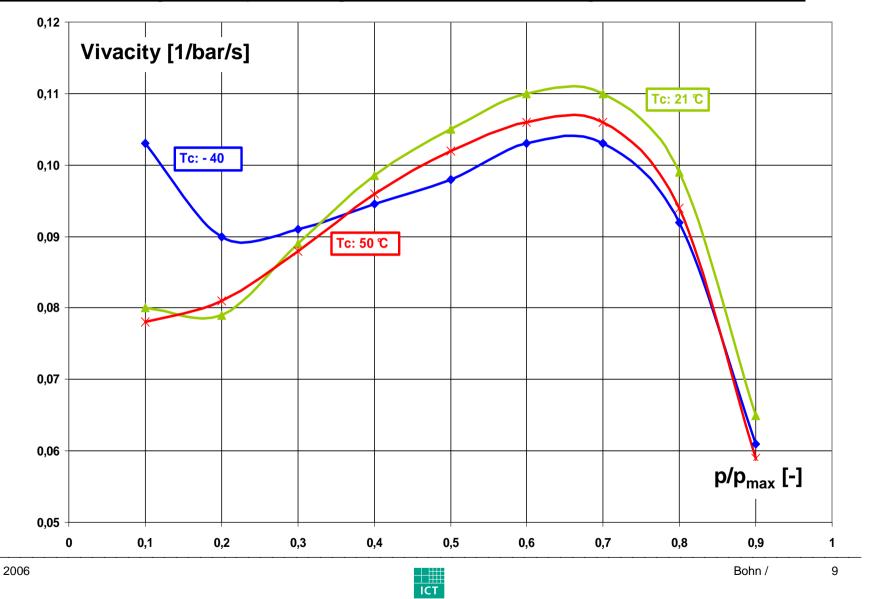
2006 Bohn / 6

Defining the LTC effect for gun propellants

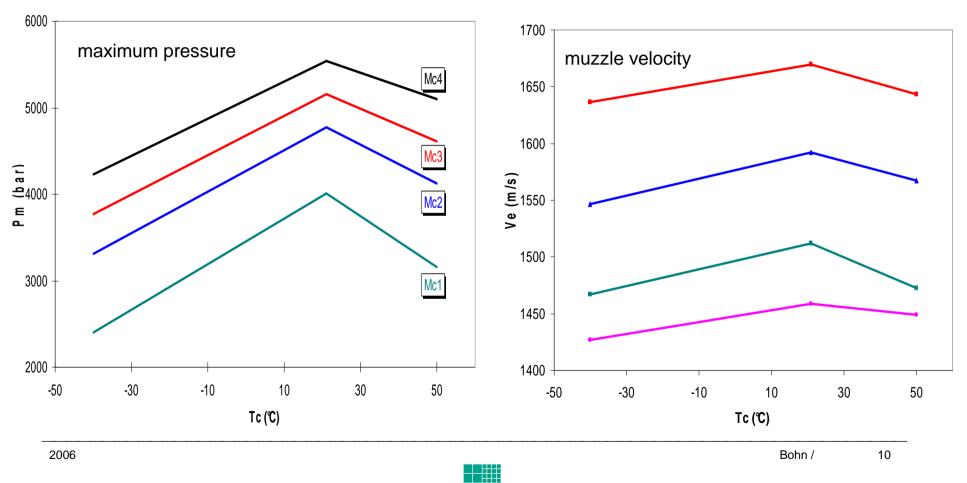
LTC: low (small) temperature coefficient means


A gun propellant which shows small to very small dependence of maximum chamber pressure as function of charge temperature temperature range of interest is from -40 $^{\circ}$ (-54 $^{\circ}$) to +63 $^{\circ}$ (+71 $^{\circ}$)

2006 Bohn / 7


Fraunhofer

Comparison of typical gas pressure curves of conventional and LTC propellants


IC

Characteristics of a LTC GP - Dynamic vivacity determined in a 200ml pressure vessel at loading density of 0.3 g/ml and at three charge temperatures Tc

Example of chamber gas pressure courses and resulting muzzle velocities as function of charge temperature Tc with charge mass Mc as parameter

40 mm gun firing tests with variable charge mass: temperature behaviour must be independent of loading density and pressure level

- Introduction
 Conventional GP versus new type gun propellants (NT-GP)
- LTC effect
- Formulations type, ingredients
- Performance data
- Results on thermal properties / sensitiveness
 adiabatic self heating cook-off sensitivity
 ageing behaviour
 mass loss at 70℃, 80℃ and 90℃
 heat generation rate at 60℃, 70℃, 80℃ and 90℃
- Results on operational properties shaped charge impact barrel erosivity
- Conclusion

2006 Bohn / 11

Principal components in some new type GP and two conventional GP

GP	base	Cal.	Web	Components
TLP 1N		70	7	NC, RDX, DNDA57; EC, AkII
TLP 2N		70	7	NC, RDX, DNDA57; EC, AkII
TLP 3N		70	7	NC, RDX, DNDA57; EC, AkII
TLP 4G		70	7	NC, RDX, FOX7, DNDA57; EC, AkII
TLP 5W		30	19	NC, RDX, DNDA57; with A17; EC, AkII
TLP 6		30	19	NC, RDX, DNDA57; without A17; EC, AkII
JA2 (L 5460)	doubl e	120	7	NC, Ngl, DGDN; AkII, MgO
MRCA (Q 5560)	triple	27	19	NC, NQ, K ₂ SO ₄ , DGDN, DOP; AkII

2006 Bohn / 12

Ingredients - part 1: energetic plasticizer DNDA

DNDA 57: liquid dinitro-diaza plasticizer

Mixture of three components: DNDA5: DNDA6: DNDA7, about 43: 45: 12 mass-%

2,4-dinitro-2,4-diaza-pentane, DNDA 5

2,4-dinitro-2,4-diaza-hexane, DNDA

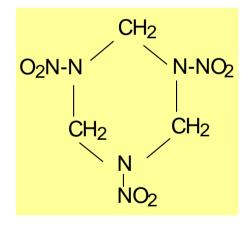
3,5-dinitro-3,5-diaza-heptane, DNDA 7

DNDA 57 gells with NC

2006

Bohn / 13

<u>Ingredients – part 2: used in the NT-GP formulations</u>


$$N_3$$
 $-CH_2$ $-C$ O C $-CH_2$ $-N_3$ $-CH_2$ $-C$

A17, EGBAA, ethylene glycol-bis-(2-azidoacetate) azido type plasticizer with ability for strong reduction of glass transition temperature

A17 was developed by ICT.

$$\begin{array}{c} H_2\,N \\ \\ H_2\,N \end{array} \hspace{-0.5cm} \subset \hspace{-0.5cm} \begin{array}{c} NO_2 \\ \\ NO_2 \end{array}$$

FOX 7, 1,1-diamino-2,2-dinitro – ethylene (DADNE) nitro compound

RDX, Hexogen, 1,3,5-trinitro-1,3,5-triaazacyclohexane nitramin compound

2006 Bohn / 14

Fraunhofer

- Introduction
 Conventional GP versus new type gun propellants (NT-GP)
- LTC effect
- Formulations type, ingredients
- Performance data
- Results on thermal properties / sensitiveness
 adiabatic self heating cook-off sensitivity
 ageing behaviour
 mass loss at 70℃, 80℃ and 90℃
 heat generation rate at 60℃, 70℃, 80℃ and 90℃
- Results on operational properties shaped charge impact barrel erosivity
- Conclusion

2006 Bohn / 15

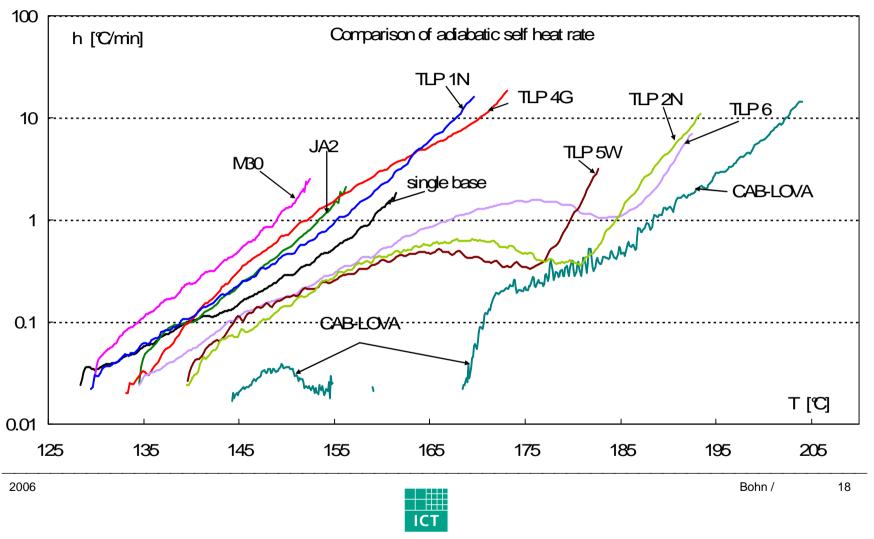
Some characteristic data of GP formulations

GP	web	LTC effect	autoignition temp. [°C]	adiab. flame temp. T _{ad} [K]	force [J/g]	Q _{EX} [J/g]	V _{EX} at 25°C [ml/g
TLP 1N	7	yes	185	2905	1170	3768	961
TLP 2N	7	yes	220	2906	1178	4198	939
TLP 3N	7	yes	193	2910	1180	4201	939
TLP 4G	7	yes	198	2908	1185	4071	938
TLP 5W	19	yes	189	2510	1060	4124	931
TLP 6	19	yes	199	2540	1080	4177	929
JA2 (L 5460)	7	no	168	3390	1139	4610	753
MRCA (Q 5560	19	no	172	3078	1040	3758	857

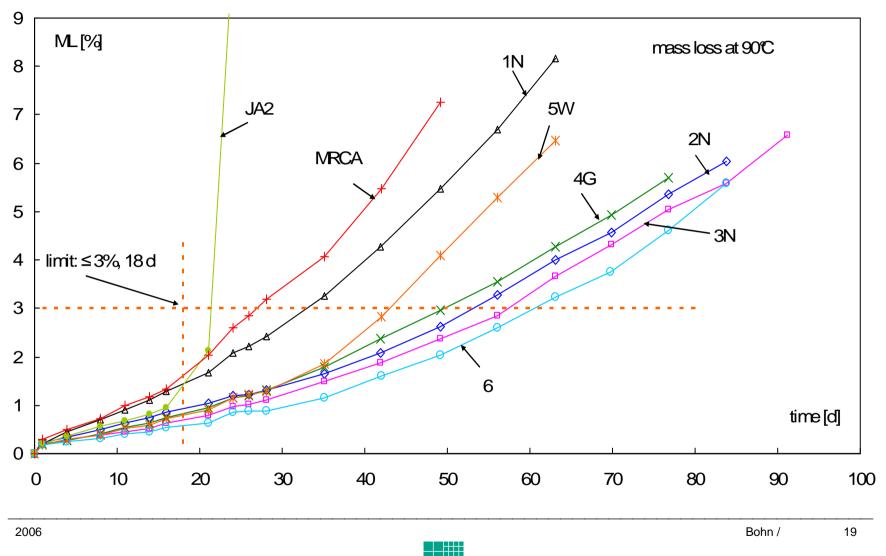
Adiabatic flame temperature T_{ad} , force, heat of explosion Q_{EX} and gas volume V_{EX} have been calculated by ICT Thermodynamic Code using the data of the ICT Thermochemical Data Base

2006 Bohn / 16

Fraunhofer Institut

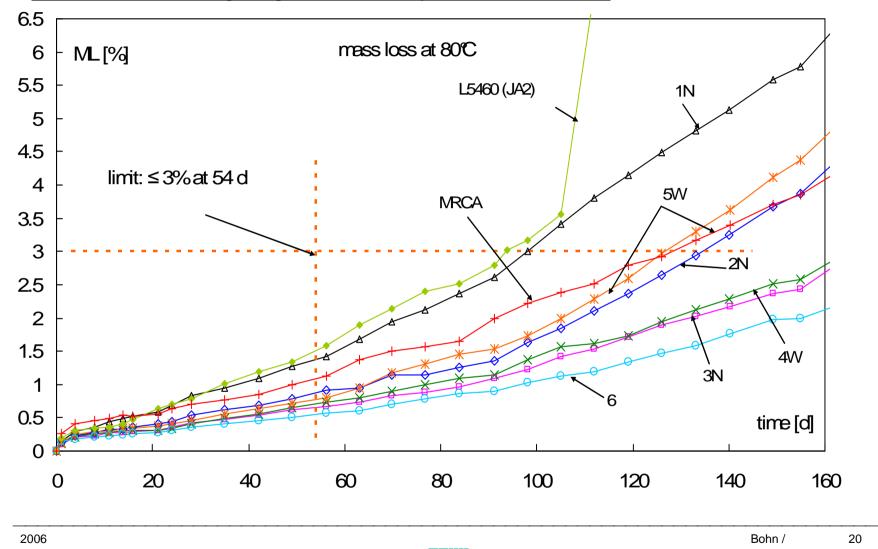

- Introduction
 Conventional GP versus new type gun propellants (NT-GP)
- LTC effect
- Formulations type, ingredients
- Performance data
- Results on thermal properties / sensitiveness
 adiabatic self heating cook-off sensitivity
 ageing behaviour
 mass loss at 70℃, 80℃ and 90℃
 heat generation rate at 60℃, 70℃, 80℃ and 90℃
- Results on operational properties shaped charge impact barrel erosivity
- Conclusion

2006 Bohn / 17



Chemische Technologie

Adiabatic self heating determined by an ARC[™] of typical conventional and of new type GP, including the XM39 GP with a binder based on CAB

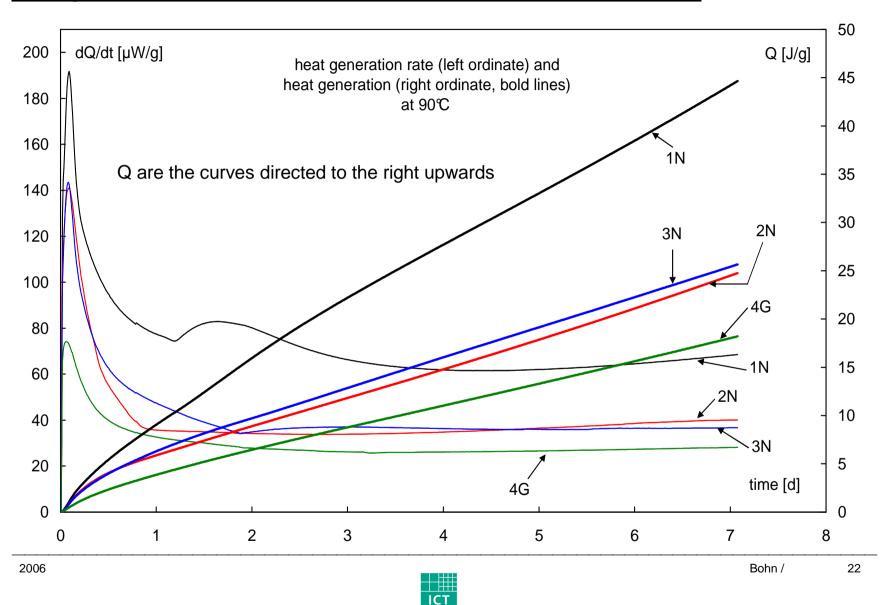


Assessment of ageing and stability with mass loss

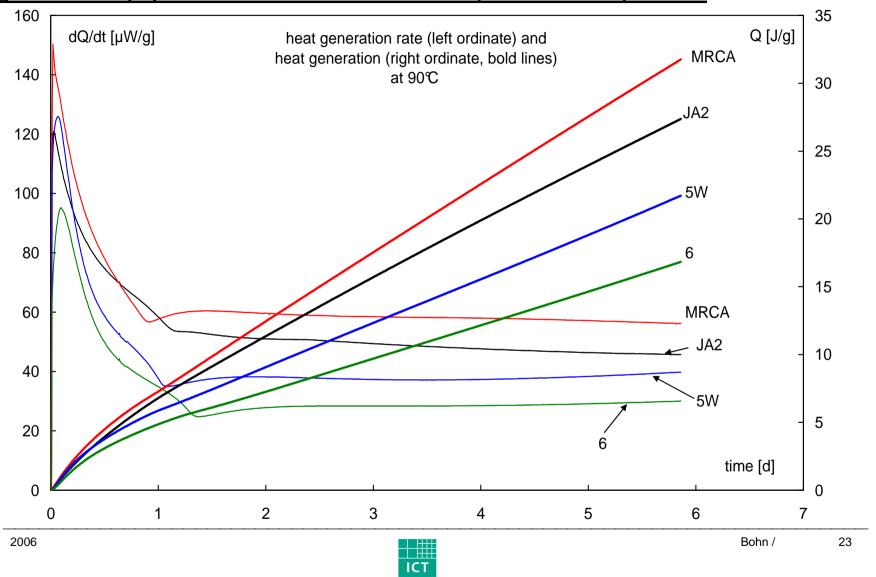
Assessment of ageing and stability with mass loss

ICT

<u>Times ty_{ML} to reach 3% mass loss in years calculated with Arrhenius</u> parameters obtained from mass loss measurements at 70℃, 80℃ and 90℃


							MRC			
	1N	2N	3N	4G	5W	6	Α	JA2	JA2, HT	
web	7	7	7	7	19	19	19	7	7	
Ea _{ML} [kJ/mol]	116.5	104.3	101.8	105.6	105.7	102.2	147.9	102.0	149.0	
	15.23	13.28	12.86	13.45			19.83			
log(Z _{ML} [1/d])	5	6	5	7	13.56	12.888	7	13.282	20.102	
	time ty _{ML} to reach 3% mass loss ML in years at preset temperatures									
65°C [a]	1.6	1.8	2.0	1.9	1.6	2.2	2.8	0.8	2.2	
50°C [a]	10.6	10.3	10.6	11.1	9.2	11.9	31.9	4.5	26.3	
35°C [a]	87.8	68.1	67.1	75.1	62.3	75.6	465.1	28.3	391.2	

2006 Bohn / 21


Fraunhofer Institut

Assessment of ageing and stability by heat generation rate (dQ/dt) and heat generation Q at 90℃ - Part 1: NT-GP 1N, 2N, 3 N and 4G

Assessment of ageing and stability by heat generation rate (dQ/dt) and heat generation (Q) at 90℃ - Part 2: NT-GP 5W, 6 and JA2, MRCA

Times ty_{EL} to reach 3% energy loss EL

Times ty_{EL} in years calculated with Arrhenius parameters obtained from heat generation rate measurements at 60° C, 70° C, 80° C an d 90° C. Reference quantity Q_{ref} is the individual heat of explosion Q_{EX}

	1N	2N	3N	4G	5W	6	MRCA	JA2		
Q _{EX} [J/g]	3768	4198	4201	4071	4124	4177	3758	4610		
web	7	7	7	7	19	19	19	7		
Ea _Q [kJ/mol]	112.3	115.6	121.6	118.2	111.5	113.9	130.0	128.2		
$log(Z_Q [\mu W/g])$	17.971	18.217	19.059	18.43 6	17.633	17.847	20.426	20.056		
	time ty _{EL} to reach 3% energy loss EL in years at preset temperatures									
65°C [a]	0.85	1.74	2.12	2.57	1.53	2.22	1.62	2.45		
50°C [a]	5.4	11.7	15.8	18.1	9.6	14.6	13.8	20.3		
35°C [a]	42	95	142	154	73	115	146	207		

2006 Bohn / 24

Fraunhofer Institut

- Introduction
 Conventional GP versus new type gun propellants (NT-GP)
- LTC effect
- Formulations type, ingredients
- Performance data
- Results on thermal properties / sensitiveness
 adiabatic self heating cook-off sensitivity
 ageing behaviour
 mass loss at 70℃, 80℃ and 90℃
 heat generation rate at 60℃, 70℃, 80℃ and 90℃
- Results on operational properties shaped charge impact barrel erosivity
- Conclusion

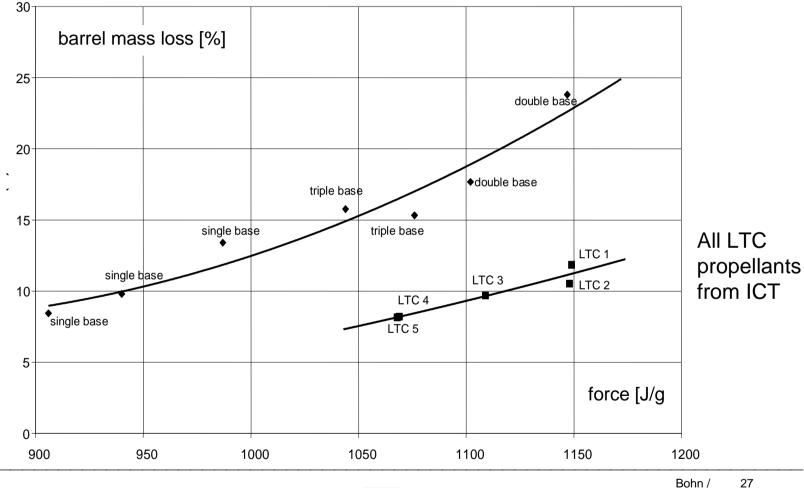
2006 Bohn / 25

Results of shaped charge jet impact (cal 44 mm) on 35 mm cartridges filled with US GP XM39 (left) and ICT's NT-GP lot 2N (right).

The XM39 propellant reacts very mild, but also ICT's NT-GP lot 2N does it

CAB -LOVA Propellant

NT-GP lot 2N with LTC



2006 Bohn / 26

Results on erosivity - Degree of erosion as function of GP force.

The hotter the combustion gases the higher the erosion. Conventional db-GP with high flame temperatures show the highest values. Data determined with a ballistic bomb equipped with plate of weapon steel having a die. The mass loss of the plate quantifies the erosivity

2006

Conclusion – part 1 of 2

ICT's NC-bonded New Type GP have significant advantages compared to conventional GP

- The autoignition temperature is higher: 185 to 220℃ versus 170 to 175℃
- High force values at lower flame temperature, difference in T_{ad} is about 400 to 500 K
- Higher force values in direct comparison of weapon designed lots
- Sensitivity against shaped charge (cal. 40mm) jet impact comparable with US XM39
- Barrel erosivity is much lower compared with convent. double and triple base GP

2006 Bohn / 28

Conclusion - part 2 of 2

The most striking advantage of ICT's NT-GP is

The small temperature dependence of maximum gas pressure p_{max} from charge temperature Tc

Means these NT-GP show a real LTC (low temperature coefficient) effect

The effect is independent of loading density and pressure level

Essential criteria for LTC

The pressure p_{max} is smaller at high temperature end (50 to 63°C) than at 21°C

The vivacity curve lies at 50 to 63℃ below the one at 21℃

2006 Bohn / 29

