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Conventional gun propellants

NC based
single base,  double base,  triple base

performance enhancement by surface treatment

Semi nitramine gun propellants

NC bonded
NC, RDX, plastizicer are nitrate ester based (sort of triple base GP)

New type gun propellants

NC bonded
NC, RDX, (+ CL20, FOX7,..), non nitrate ester plasticizer 

elastomer bonded (thermoplastic, GAP, CAB,...)
binder, RDX (+ any X), plasticizer



ICT’s New Type Gun Propellants (NT-GP)
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NC bonded
NC, RDX, (+ CL20, FOX7,..), non-nitrate ester plasticizer

DNDA gun propellants

DNDA
recent plasticizer based on the  n,(n+2)-Di Nitro - n,(n+2)-Di Aza group
as energetic molecular part

NO2

N CH2 CH3N

NO2

CH3
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Defining the LTC effect for gun propellants
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LTC: low (small) temperature coefficient

means

A gun propellant which shows small to very small dependence of 
maximum chamber pressure as function of charge temperature

temperature range of interest is from -40°C (-54°C)   to  +63°C (+71°C)



Comparison of typical gas pressure curves of conven tional and LTC 
propellants
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Characteristics of a LTC GP - Dynamic vivacity deter mined in a 200ml pressure 
vessel at loading density of 0.3 g/ml and at three charge temperatures Tc
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Example of chamber gas pressure courses and resulti ng muzzle 
velocities as function of charge temperature Tc with  charge mass Mc as 
parameter
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Principal components in some new type GP and two co nventional GP
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Ingredients - part 1:  energetic plasticizer DNDA
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NO2

N CH2 CH3N

NO2

CH3

NO2

N CH2CH2 CH3N

NO2

CH3

CH3 CH2

NO2

N CH2CH2 CH3N

NO2

2,4-dinitro-2,4-diaza-pentane, DNDA 5

2,4-dinitro-2,4-diaza-hexane,  DNDA 
6

3,5-dinitro-3,5-diaza-heptane, DNDA 7

DNDA 57:   liquid dinitro-diaza plasticizer 

Mixture of three components:  DNDA5 : DNDA6 : DNDA7,  about 43 : 45 : 12 mass-%

DNDA 57 gells with NC



Ingredients – part 2:  used in the NT-GP formulation s
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CN3
O

CH2

O

O

CH2C
O

CH2 CH2

N3 C C

NO2

NO2H N2

H N2

FOX 7,
1,1-diamino-2,2-dinitro –
ethylene (DADNE) 
nitro compound

A17, EGBAA,
ethylene glycol-bis-(2-azidoacetate)
azido type plasticizer with ability for 
strong reduction of glass transition 
temperature

N-NO2

CH2

CH2CH2

O2N-N

N

NO2

RDX, Hexogen, 
1,3,5-trinitro-1,3,5-triaaza-
cyclohexane
nitramin compound

A17 was developed by ICT.
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Some characteristic data of GP formulations


2006                                                          Bohn /                   16

19

7

19

19

7

7

7

7

web

8573758
10403078172no

MRCA (Q 
5560

753461011393390168noJA2 ( L 5460)

929417710802540199yesTLP 6

931412410602510189yesTLP 5W

938407111852908198yesTLP 4G

939420111802910193yesTLP 3N

939419811782906220yesTLP 2N

961376811702905185yesTLP 1N

VEX at 
25°C [ml/g

QEX
[J/g]

force 
[J/g]

adiab. 
flame temp. 

Tad [K]

autoignition
temp. [°C]
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GP

Adiabatic flame temperature Tad, force, heat of explosion QEX and gas volume VEX have been 
calculated by ICT Thermodynamic Code using the data of the ICT Thermochemical Data Base
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Adiabatic self heating determined by an ARC TM of typical conventional and 
of new type GP, including the XM39 GP with a binder  based on CAB
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Assessment of ageing and stability with mass loss
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mass loss at 90°C
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Assessment of ageing and stability with mass loss
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mass loss at 80°C
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Times ty ML to reach 3% mass loss in years calculated with Arrh enius 
parameters obtained from mass loss measurements at 70°C, 80°C and 90°C
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Assessment of ageing and stability by heat generati on rate (dQ/d t) and 
heat generation Q at 90°C - Part 1:  NT-GP 1N, 2N, 3 N and 4G
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Assessment of ageing and stability by heat generati on rate (dQ/dt) and heat 
generation (Q) at 90°C - Part 2:  NT-GP 5W, 6  and  JA2, MRCA
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heat generation rate (left ordinate) and 
heat generation (right ordinate, bold lines)

at 90°C
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Times ty EL to reach 3% energy loss EL
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20714611573154142954235°C [a]

20.313.814.69.618.115.811.75.450°C [a]

2.451.622.221.532.572.121.740.8565°C [a]

time tyEL to reach 3% energy loss EL in years at preset temperatures

20.05620.42617.84717.633
18.43

6
19.05918.21717.971log(ZQ [µW/g])

128.2130.0113.9111.5118.2121.6115.6112.3EaQ [kJ/mol]

71919197777web

46103758417741244071420141983768QEX [J/g]

JA2MRCA65W4G3N2N1N

Times tyEL in years calculated with Arrhenius parameters obtained from heat 

generation rate measurements at 60°C, 70°C, 80°C an d 90°C.
Reference quantity Qref is the individual heat of explosion QEX
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Results of shaped charge jet impact (cal 44 mm) on 35 mm cartridges 
filled with US GP XM39 (left) and ICT’s NT-GP lot 2N  (right).  
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CAB -LOVA 
Propellant

LTC 
Propellant

The XM39 propellant reacts very mild, but also ICT’s NT-GP lot 2N does it

NT-GP lot 2N 
with LTC



Results on erosivity - Degree of erosion as function of GP force.
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The hotter the combustion gases the higher the erosion. Conventional db-GP with high flame 
temperatures show the highest values. Data determined with a ballistic bomb equipped with 
plate of weapon steel having a die. The mass loss of the plate quantifies the erosivity
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propellants 
from ICT



Conclusion – part 1 of 2
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ICT‘s NC-bonded New Type GP have significant advantages compared to conventional GP 

● The autoignition temperature is higher: 185 to 220°C  versus 170 to 175°C

● High force values at lower flame temperature, difference in Tad is about 400 to 500 K

● Higher force values in direct comparison of weapon designed lots

● Sensitivity against shaped charge (cal. 40mm) jet impact comparable with US XM39

● Barrel erosivity is much lower compared with convent. double and triple base GP



Conclusion – part 2 of 2
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The small temperature dependence of maximum gas pressure pmax from charge 
temperature Tc

The most striking advantage of ICT’s NT-GP is

Means these NT-GP show a real LTC (low temperature coefficient) effect

The effect is independent of loading density and pressure level

Essential criteria for LTC

The pressure pmax is smaller at high temperature end (50 to 63°C) tha n at 21°C

The vivacity curve lies at 50 to 63°C below the one  at 21°C


