Ross Miller

Approaches to the Synthesis of Energetic Heterocyclic Compounds Suitable for Use in Insensitive Explosive and Propellant Compositions

Ross W. Millar^a, Javid Hamid^a, Robert Endsor^a, Peter Swinton^b and John Cooper^b (*Presented by Dr Eamon Colclough*)

^aQinetiQ Ltd., Fort Halstead, Sevenoaks, Kent TN14 7BP, U. K. ^bNobel Energetics, Ardeer Site, Stevenston, Ayrshire KA20 3LN, U.K.

Presentation to 2006 Insensitive Munitions & Energetic Materials Technology Symposium, Bristol, U.K., 24-27 April 2006

Outline of Presentation

- Introduction
- Reappraisal of Insensitive High Explosives (IHEs)
- Selection Method for Candidate Compounds
- Discussion of Syntheses of Selected Candidates
- Other Properties of Selected Candidates
- Conclusions
- Acknowledgements

QinetiQ

Insensitive explosives/propellants

- Create insensitive composition by desensitisation of high energy compounds (e.g. HMX)
- Synthesise intrinsically insensitive HE compounds

Rationale Behind IHE Research

- Previous types of IHE compounds
 - Amino-nitro aromatics e.g. TATB, DATB
 - Known since 1880s
 - Insensitive to ignition
 - Large critical diameter
 - PBX developments overcame these issues
 - Nuclear applications
 - Picrylated aromatics (carbo-/heterocyclic) e.g. 2,6di-(picrylamino)-3,5-dinitropyridine (PYX)
 - Behaved more like nitoraromatics
 - Low sensitivity
 - But low performance

QinetiQ

Newer Types of IHEs

- Increased nitrogen content
 - Heterocyclic nuclei instead of carbocyclic (O Balance)
 - More amino groups and fewer nitro groups (H bonding)
 - Replace nitro groups by N-oxide (Sensitiveness)
- Increased density
 - Heterocyclics
 - Unsymmetrical molecules
- Both these changes lead to increased power output with maintained or improved insensitivity QinetiQ

Objective

- Reassessment as
 - Cheaper sources of chemicals may make then viable
 - Newer applications (e.g. initiators, explosive trains) need smaller amounts
- Examine molecules made on lab scale
- Assess feasibility of scaling up to Kg scale
 - Availability of raw materials
 - Cost of raw materials
 - Practicality of synthesis
 - Safety of scale up

Selection Criteria for new IHEs

- Power (Pcj) greater than TATB (i.e. >25 GPa)
- Impact sensitivity acceptable (not <70 cm [US h 50%])
- Density >1.75 gcm⁻³
- Thermally stable (DSC exotherm >200°C)

Structural Classes of New IHEs

- 1,2,5-Oxadiazoles (Furoxans)
- 1,2,4-Triazoles (including ANTA derivatives)
- 1,2,3-Triazoles
- Pyrazoles
- Other monocyclic heterocycles
- Non-heterocycles
- >50 compounds considered originally

IHE Structures (Selection)

QinetiQ

IHE Structures (Selection) - continued

QinetiQ

Downselection

- FOX-7, TEX, DADNPO commercially available
- PATO low density
- PZO question over sensitiveness
- ANPZ precursor to PZO
- ADNBF lower performance than CI-14
- Left 5 candidates

Further Downselection

- NTAPDO N oxidation could not be achieved
- PANT safety (p-toluenesuphonyl azide) and cost
- Left 3 candidates NNHT, CL-14 and ANPZ-i

Structures of Selected IHE Candidates

Synthesis of CL-14

CL-14

- 1st stage nitration
 - Possible problem with sensitiveness of tetranitroaniline
 - possible with N_2O_5 /sulphuric acid at lower temp.
- Waste streams being analysed
- Reported applications
 - Pressable compositions with EVA binder (for boosters)
 - Melt-castable explosive compositions with either:
 - Carnauba waxes
 - Ozokerite waxes

Synthesis of NNHT

NNHT

- First synthesised by Aerojet, also studied in Russia and Australia
- 1st step is 16 hour reaction
- 2nd is 8 hour reaction
- Working to reduce these
- Reported application as oxidizer for gun propellants

Synthesis of ANPZ-i

QinetiQ

ANPZ-i

- First reported in Russia
- Synthesis improved in QinetiQ
- Complex synthesis
- Working to improve by use of 2-amino-5chloro, 2-amino-5-bromo or 2,5-dichloropyrazines
- No reported uses

Explosive Performance

Compound	Formula	Exptl. Density gcm ⁻³	Calc. Density gcm ⁻³	∆H _f kcalmol ⁻ 1	P _{cj} from exptl. Density GPa	P _{cj} from calc. Density GPa
CL-14	C ₆ H ₄ N ₆ O	1.91	1.94	21	32.4	33.3
ANPZ-i	C ₄ H ₄ N ₆ O	n/k	1.88	23.2	n/k	34.9
NNHT	$C_3H_6N_6O$	1.75	1.764	16.3	29.9	29.3

Enthalpies of formation (ΔHf) were calculated using the software MOPAC Version 6.00 with the PM3 semi-empirical method, density calculations were carried out using the MOLPAK 2.0 software – the results obtained are the highest theoretical densities calculated by this program – and Cheetah 2.0 was used for detonation pressure (Pcj) calculations.

QinetiQ

Conclusions

- Explosive compounds exist which:
 - Possess high performance yet exhibit low sensitivity
 - And can be synthesised in quantity
- Downselected against a number of criteria
- Three candidate compounds are currently undergoing evaluation (one will be recommended for scale up)
- Should be suitable for EIDS category compositions (UN 1.6)

Acknowledgements

- U.K. Ministry of Defence

 Weapon and Platform Effectors Domain
- QinetiQ
 - Analytical and Detonics staff
- Nobel Energetics
 - Bill Leeming
 - Support staff

