Nikki Rasmussen

An advanced weapon and space systems company

Development of New Insensitive TNT-Based Explosives with Excellent IM Characteristics

Presented by: Nikki Rasmussen, ATK

•There are several problems with current IM compounds , such as:

- High cost
- Additional production steps for melt-pour facilities
- Some IM compounds require extensive investment in existing facilities
- Multiple compounds needed to produce limited IM results
- Toxicity concerns for personnel and waste management
- Life-cycle analyses are limited
- Lethality degradation
- Sensitivity concerns
- Balance between impact and thermal threats
- Currently, there are unique solutions for different munitions

There Exists A Need For A Common, Low-Cost IM Solution For Bomb And Artillery Fills!

Why TNT-Based Insensitive Common Explosives?

An advanced weapon and space systems company

- TNT is the historic common explosive.
- TNT processing is well understood.
- TNT already has low impact sensitivity and good thermal sensitivity.
- TNT is low cost.
- Manufacturing and loading infrastructure is already in place.
- TNT offers tailorable performance (Comp B, Tritonal, Octol, etc.)
- Formulation only needs to be less sensitive than TNT at same or improved performance.

TNT Has Been The Explosive of Choice for 100 Years.

Desensitizing TNT

Utilizing current technologies based on PAX-35

Similar desensitizer moieties used to desensitize TNT

Formulations tested thus far are relatively simple

- TNT + Desensitizer
- TNT + Desensitizer + Aluminum
- TNT + Desensitizer + Nitramine

TNT-based formulation + Desensitizer

- Desensitizer must be:
 - Low Cost
 - Environmentally friendly
 - High Performance
- Maintain "drop in" capability for loading operations
 - Minimal modifications to manufacturing and melt/pour facilities will be required

PAX-44 (TNT + Desensitizer) Formulation is Being Developed for 155mm HE Projectiles

Test Evaluation Series

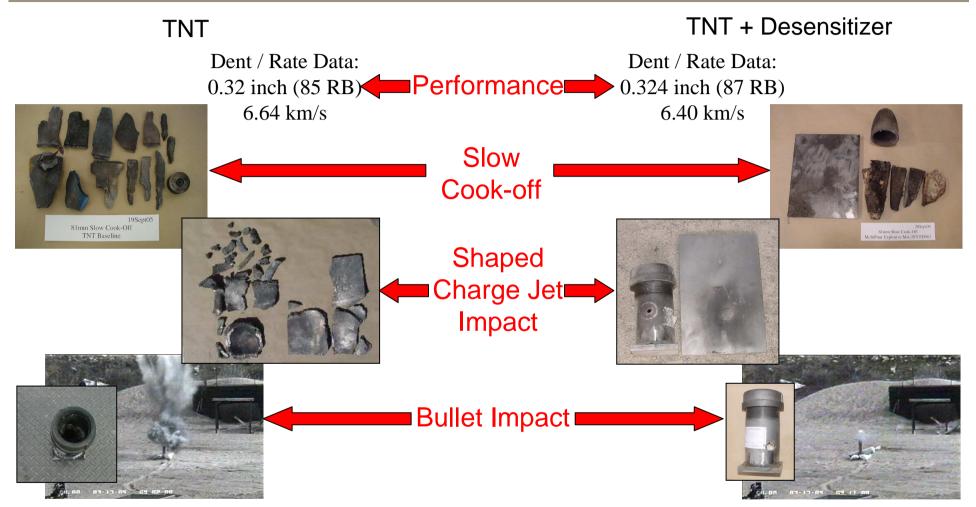
An advanced weapon and space systems company

•Sub-Scale Tests

- Dent/Rate using instrumented NOL pipe
- BI against a 3" pipe
- SCJI against a 3" pipe using a 25mm SCJ
- SCO against an 81mm mortar

•Mid-Tier Tests

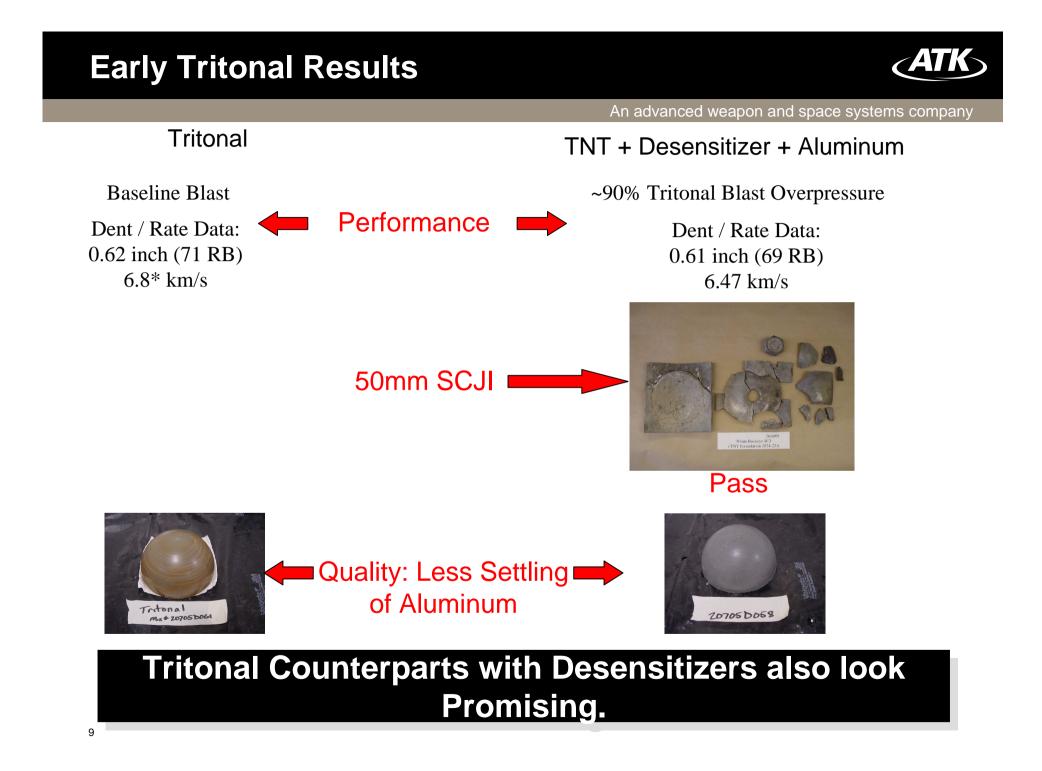
- Dent/Rate using instrumented ELSGT pipe
- BI against 155mm section
- SCJI against 155mm section using 50mm Rockeye SCJ
- Blast Overpressure


•Full-Scale Tests

• Tests are planned

Sub-Scale Tests

An advanced weapon and space systems company


TNT + Desensitizer reduces reaction severity without compromising performance.

Mid-Tier Tests

An advanced weapon and space systems company TNT + TNT + TNT Desensitizer#2 Desensitizer#1 **Baseline Blast** Performance ~99% TNT ~75% TNT 50mm SCJI Fail Pass Bullet Impact

Performance and IM characteristic trade-offs noted with Desensitizers. Optimization with different desensitizers & nitramines needed.

•Preliminary formulation work shows promising results reaction severity of:

- Bullet Impact (BI)
- Shaped Charge Jet Impact (SCJI)
- Thermal Characteristics

•Preliminary formulation work shows minimal reduction of performance:

- Dent / Rate Performance shows similar performance
- Blast Overpressure shows similar performance

•Desensitizers in TNT at low levels show promise to:

- Allow tailor able IM and explosive performance possible
- Compatible with current LAP facilities
- Workable for Tritonal replacements

TNT+ Desensitizers look promising. Additional testing and evaluation planned.