Ben Smit

HE Formulation for and Full-scale Characterisation of an IM Missile Fragmentation Warhead

C E du Toit and B T Smit

Outline

- Background
- Introduction
- High Explosive formulation
- Small-scale characterisation
- Full-scale performance evaluation
- Full-scale IM demonstration

- Denel started experimenting with plasticised Hytemp-based formulations in 2001.
- Formulation successfully tested in a high-setback configuration.
- Results reported in papers presented at Parari 2003 & 2005.
- Work continued to formulate a High Explosive for a fragmentation warhead to render missile systems IM compliant

- Superior IM properties of PBX's based on Hytemp and DOA plasticisers are well known.
- Cast PBX investigations at Denel proved that:
 - Coating RDX or HMX with DOA desensitises explosive effectively
 - Explosive content and crystal size distribution are key factors of sensitivity
- Initiation results from interaction between shockwaves and nonhomogeneity in pressed compositions (so-called hot spots formed by void collapse along with impact and friction between particles).
- Explosive could therefore also be desensitised by minimising voids.
- Suitable thermoplastic elastomer (TPE) to introduce IM properties to pressed PBX required.
- Hytemp series of TPE's well known as pressed PBX binders and was an obvious choice for investigation.

HE Formulation

- Reference: RXCX-1
 - RDX-based Pressed PBX
 - Cariflex as inert TPE binder
 - Poor IM properties
- Preferred characteristics of an IM alternative
 - RDX-based
 - No energetic binder
 - Pressed PBX
 - Good machineability
- Formulations evaluated
 - Plasticised binder system based on Hytemp 4454
 - RDX-based (RXHR-6)
 - HMX-based (HXHR-1)

Performance of IM Formulations Compared to Baseline

Droporty	Formulation			
Property	RXCX-1	RXHR-6	HXHR-1	
Density (g/cc)	1.717	1.669	1.765	
VOD _{exp} (m/s)	8440	8247	8586	
P _{BKW} (kbar)	297	273	299	
Gurney Energy _{BKW} (m/s)	2765	2709	2756	

 Theoretical effectiveness study concluded that RXHR-6 would meet the system performance requirement.

Small-scale Testing

Sensitivity comparison of HE formulations (Gap Test)

Formulation	Gap for 50% transfer probability	
RXCX-1	50 mm	
PBXW-17	38 mm	
RXHR-6	28 mm	
HXHR-1	35 mm	

 Extensive vulnerability testing in a standard configuration used for the establishment of technology supported the above Gap Test evaluations.

Arena testing of RXHR-6

- Performance specification achieved
 - Fragment distribution
 - Penetration

Full-scale IM Demonstration

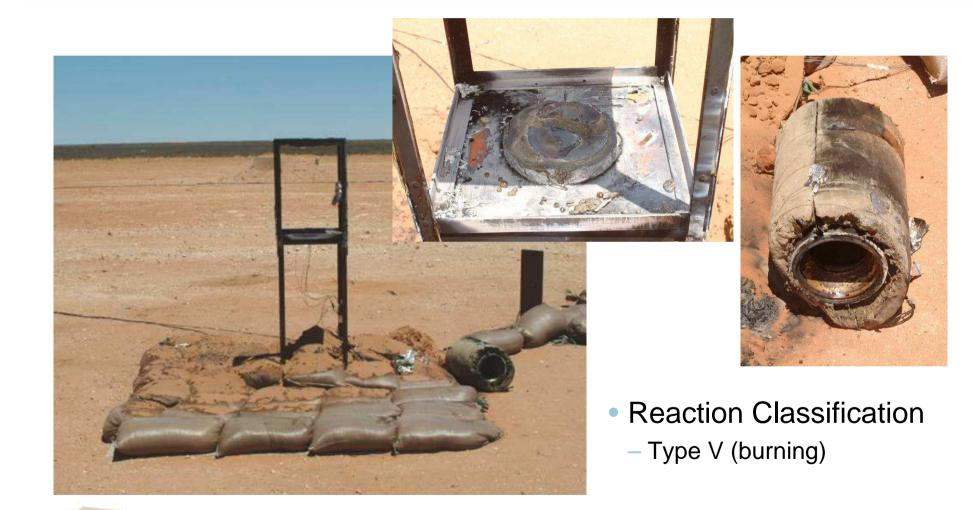
- Two candidate formulations tested in analogue warhead
 - RXHR-6 (RDX-based)
 - HXHR-1 (HMX-based)
- One formulation selected and tested in fragmentation warhead
 - RXHR-6
- Tests conducted
 - Slow Heating
 - Liquid Fuel Fire
 - Bullet Attack
 - Fragment Impact

Slow Heating Test

- Standards
 - NATO STANAG 4382
 - MIL-STD 2105 B
- Heating apparatus
 - Ceramic heating blanket (1×7 kW)
 - Thermally insulated
 - Heating rate 3,3℃/hour

- Instrumentation & audio-visual equipment
 - Thermocouples (4 × Type K)
 - Bikini gauges
 (2 arrays of 3 × Type B-I and 3 × Type B-II)
 - Pressure transducers (2 x)
 - Video cameras (3 × VHS)

Slow Heating Test


200 150 Temperature [°C] Temp. 01 100 Temp. 02 Temp. 03 Temp. 04 50 Temp. 05 3,3 ℃/h Spec. 0 6 12 18 24 36 0 30 42 48 Time [min]

- Energetic events
 - Bulkhead dislodged at 171 ℃
 - Ignition and non-violent burning of explosive at 188 $\ensuremath{\mathfrak{C}}$

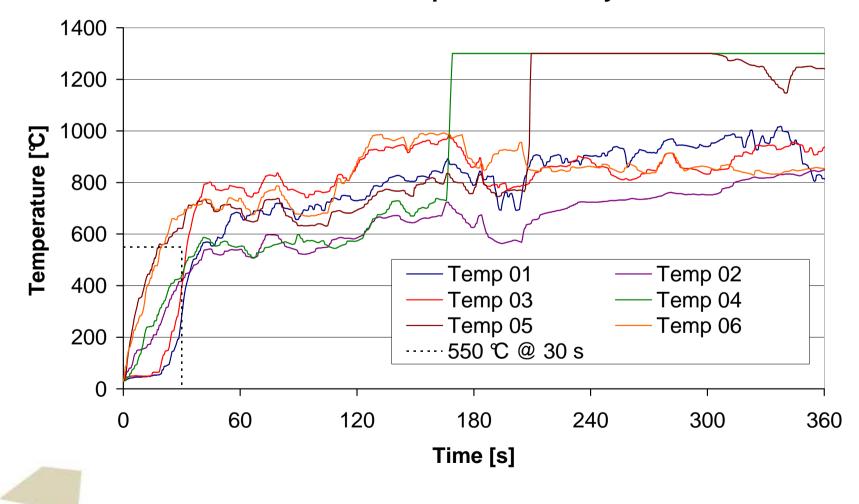
Temperature History

Slow Heating Test

Liquid Fuel Fire Test (Mini)

- Standards
 - NATO STANAG 4240
 - MIL-STD 2105 B

Hearth


- 3 × 200 litre containers
 (approximately 365 mm dia. × 2,4 m high)
- Instrumentation & audio-visual equipment
 - Thermocouples (6 × Type K)
 - Bikini gauges
 (2 arrays of 3 × Type B-I and 3 × Type B-II)
 - Pressure transducers (2 ×)
 - Video cameras equipped with microphones (2 × SVHS, 3 × VHS)
 - High-speed digital video camera (1000 fps)

Liquid Fuel Fire Test

Flame Temperature History

Liquid Fuel Fire Test

Average Flame Temperature

Liquid Fuel Fire Test

DENEL LAND SYSTEMS WESTERN CAPE

Energetic events

- Both bulkheads were expelled (165 and 183 seconds after ignition of fuel)
- Explosive ignited and burned non-violently (203 seconds after ignition of fuel)

Observations

- Bulkhead imprint on container
- Molten aluminium casing on steel grid
- Traces of exposed EM burning on steel grid
- No overpressure measured
- No fragmentation
- Reaction Classification
 - Type V (burning)

Bullet Attack Test

- Standards
 - NATO STANAG 4241
 - MIL-STD 2105 B
- Attack munition
 - 12,7 mm Amour Piercing
 - 850 m/s impact velocity
 - 20 m stand-off distance

Instrumentation & Audio-visual Equipment

- Bikini gauges
 - (2 arrays of 3 × Type B-I and 3 × Type B-II)
- Pressure transducers (2 x)
- Video cameras (2 × SVHS, 3 × VHS)
- High-speed digital video (1000 fps)

Bullet Attack Test

Bullet Attack Test

Debris mapping

Item Description	Distance [m]	Angle (from N)	Mass [g]
Front bulkhead	2,80	163 ^o	369
Compression disc	11,45	146 ^o	28
Outer sleeve half	16,50	193 ^o	~290
Outer sleeve half	7,15	236 °	~290
Booster half	2,70	112 °	~8
Explosive	0,45	13 º	~150
Explosive	0,90	66 °	~250

- Energetic events
 - Explosive burned non-violently
- Reaction Classification
 - Type V (burning)

IM Classification Comparison of Warheads with Baseline and IM Formulations

	Warhead Configuration and Explosive Formulation					
Test	Baseline Analogue Warhead			IM ¹		
	RXCX-1	RXHR-6	HXHR-1	RXHR-6		
Slow Heating	Type V	Type V	Type V	Type V		
Liquid Fuel Fire	Type II	Type V	Type V	Type V		
Bullet Attack	Type I	Type V	NR ³	Type V		
Fragment Impact ²	Type I	NR ³				

1. Identical warhead configuration to baseline apart from formulation

- 2. 16-gram cylindrical fragment with an impact velocity of 2000 m/s as reported by König and Smit, 2004 IM & EM Technical Symposium
- 3. No Reaction

Baseline formulation RXCX-1

<							
Image: Constraint of the sector of the se		REACTION		=	≡	N	V
Image: Section of the section of th		Liquid Fuel Fire					
Image: Constraint of the sympathy interview Image: Co		Slow Heating					
Image: Spall Impact Shape Charge Impact Shape Charge Impact Sympathetic		Bullet Attack					
Image: Strate in the strate	TEST	Fragment Impact					
Jet Impact Sympathetic		Spall Impact					

IM formulation RXHR-6

<	N	≡	=	—	REACTION	
					Liquid Fuel Fire	
					Slow Heating	
					Bullet Attack	
					Fragment Impact	TEST
					Spall Impact	
					Shape Charge Jet Impact	
					Sympathetic Reaction	

- A cost effective IM High Explosive was formulated.
- Performance requirement is met for both fragment distribution and penetration.
- Formulation is insensitive to mechanical and thermal stimuli as demonstrated by full-scale IM testing.

