Andrew Wilson

Improved IM Melt-Cast Explosives

Mr. Andrew Wilson BAE Systems Holston Army Ammunition Plant

Briefing Objectives

- Background
- Ingredient Availability
- Melt-pour Formulation Update
 - Performance and Shock Sensitivity
- Systems Testing

- GD-OTS 120mm HE-T Ammunition
- MECAR 120mm Mortar

Acknowledgements

PM/CAS for Sponsorship – Bill Kuhnle, Keith Lumens RDECOM-ARDEC for Technical Support – Paul Vinh, Roger Wong, Brian Travers GD-OTS (Jason Gaines et al.) MECAR (Simon Haye et al.) BAE Systems OSI – Brian Alexander, Kelly Guntrum, Jim Owens, Curtis Teague, Brooke Jones, Dr. Patrick Greer, Dr. Gert Mueller

Background

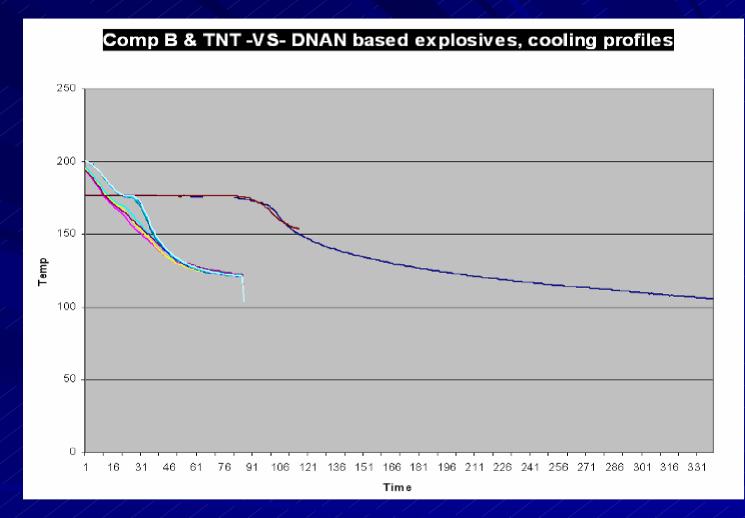
Melt-Pour History

- Extensively used by NATO countries
- Existing substantial Industrial Base capability
- Historically used "TNT" as HE melt-phase
 - e.g. Composition B RDX/TNT (60/40)
 - Satisfactory detonation energy
 - Easy to load and demilitarize TNT-based explosives
- But, TNT suffers from poor IM performance
 - International initiatives to replace "Composition B" in essentially all ammunition products

Background (cont)

Polymer Bonded Explosives

- Satisfactory performance
- Great mechanical properties
- Generally much improved IM response
- But Not Without Issues
 - Melt-pour equipment not suitable for PBX's
 - Major facilitization costs
 - Thermosetting (rework and demilitarization issues)
 - Curing cycle (one to several days W.I.P issues)


Ingredient Availability

BAE SYSTEMS

2,4-dinitroanisole (DNAN) First used in 2nd World War AMATOL-40 – DNAN/AN/RDX for 'V Rockets' Revisited for melt-cast HE by Picatinny Arsenal: PAX-21 (60mm Mortar – standard Holston product); PAX-41 (SPIDER – Holston development product) Initially sole-source from China Excellent melt-pour characteristics

NOTE: DNAN-based explosives found to melt faster, solidify more quickly, and exhibit less shrinkage than TNT based explosives.

Ingredient Availability (cont.)

- Nitrotriazalone (NTO)
 - Similar performance to RDX
 - Much improved IM response
- - Outstanding IM performance
 - Good detonation performance
- DNAN, NTO, and TATB are now Standard Production Items from Holston's Agile Facility (G-10)

2,000 Gallon Glass-lined Reactor

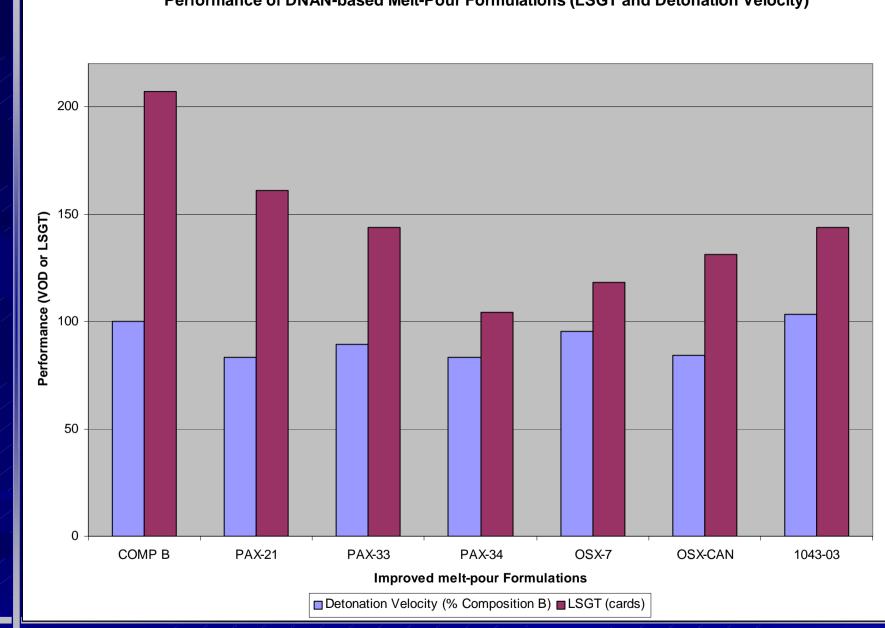
Part of Holston's Extensive Agile Facility

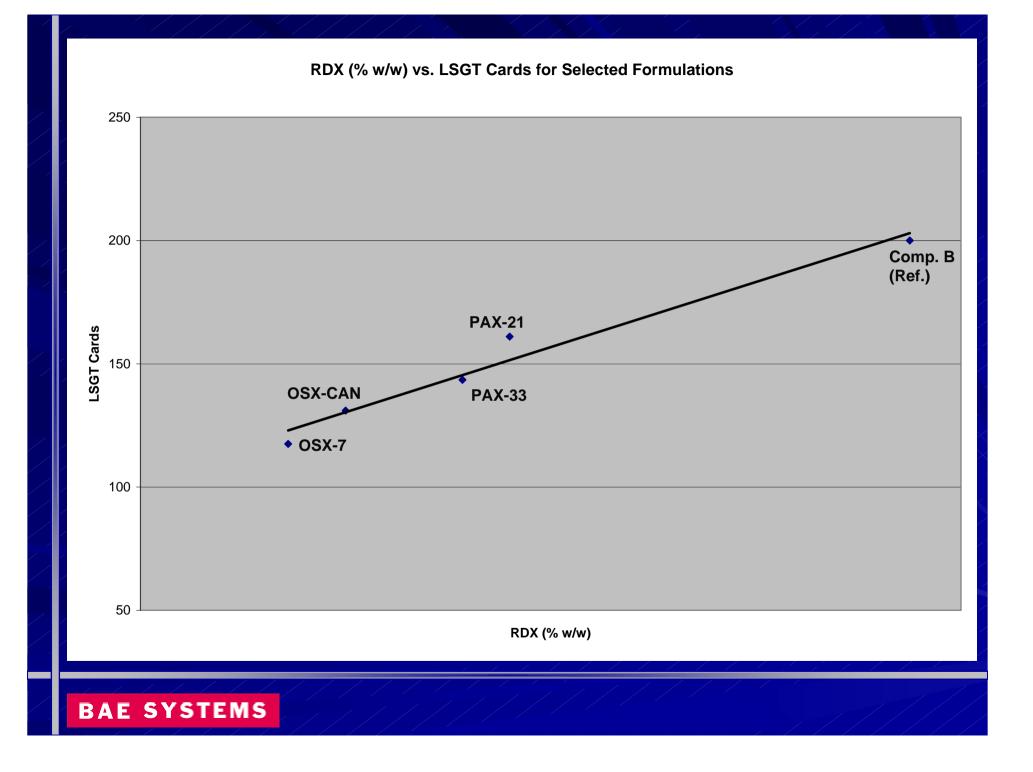
Formulation Update

Formulation Goals

- Match Composition B or TNT performance
- Pass IM tests in system tests
- Address stakeholder cost Issues
 - Use of existing facilities; demil; material costs etc.

Approach


- Judicious use of available materials
 - DNAN, NTO, TATB, RDX etc. ingredients
- Characterization, testing, leading to scale-up


Summary Formulation Results

Material:	TMD (g.cm ⁻³)	VOD (% Comp. B)	VOD (% TNT)	LSGT (Cards)	Reference	Scale of Manufacture to Date	DSC MP / Exotherm Onset (℃)	Efflux Viscosity (sec.) @ 96C
ΤΝΤ	1.654	84	100	133	(MSIAC)	-	-	-
COMP B	1.76329	100	120	207	LLNL / NOL	Production (1500 Lb scale)	80 / 215	-
PAX-21	1.72857	83	99	161	ARDEC		89 / 193	4.8 - 8.6
PAX-33	1.73614	89	106	144	UTEC / ARDEC		88 / 207	8.7
PAX-34	1.76098	83	99	104	ARDEC		87 / 245	8.5
OSX-7	1.74835	95	113	118	OSI	Development (25 Lb scale)	92 / 215	15
OSX-CAN	1.59437	84	100	131	OSI		93 / 225	5.9
1043-03	1.76937	103	120	144	OSI		95 / 229	9.2

Performance of DNAN-based Melt-Pour Formulations (LSGT and Detonation Velocity)

Fragmentation (Pit) Trials on PAX-33

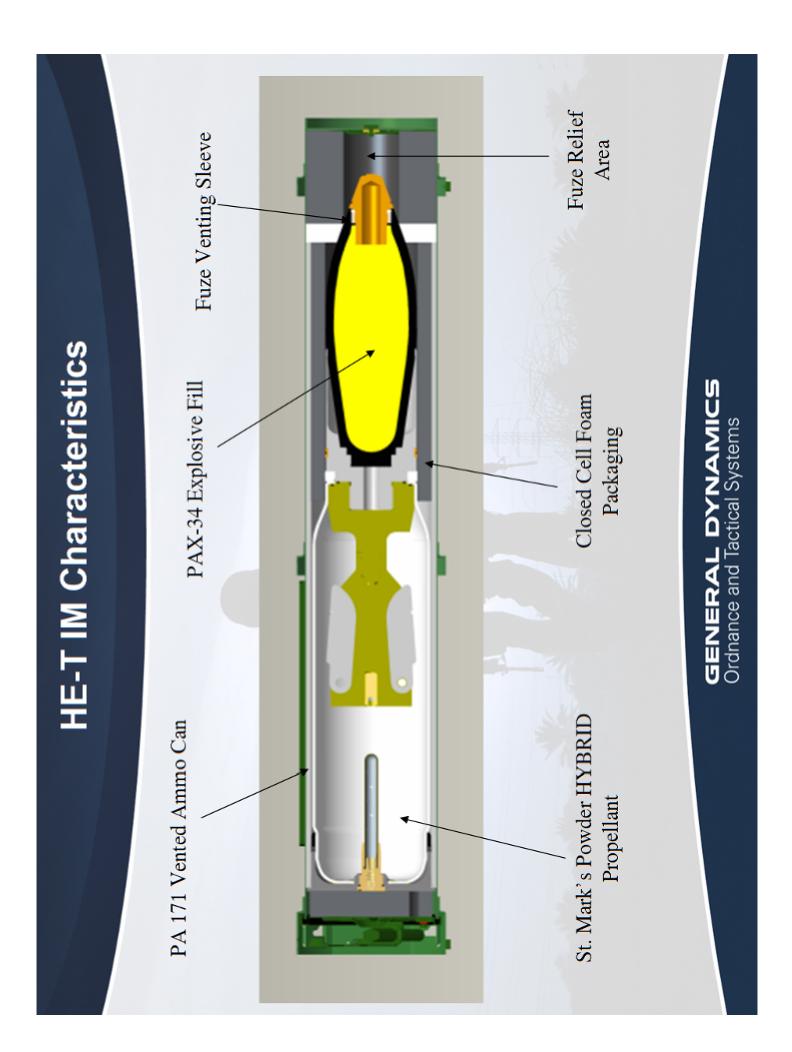
Fragmentation (Pit) Tests

of Fragments (1.5 - 5.0 g No. of Fraç 1340 COMP B □ HF-1 CBR-12E (PAX-21) HF-1 PAX-33 ò. 60mm Projectile 60mm Projectile Source and acknowledgement: Mr. Roger Wong, RDECOM-ARDEC, Picatinny Arsenal, NJ; April 2006

Fragmentation (Pit) Tests

NOTE: an improved PAX-33 has potential for use in a system that uses regular 1340 steel ammunition, instead of "high fragmentation" steel, which has potential savings of \$10 / round for 60mm Ammunition.

QUESTION: could this savings opportunity be realized for larger, more expensive ammunition, if the performance of the explosive was satisfactory in the less-expensive ammunition body?


Formulation Deductions

- Significant Potential for Melt-Cast HE
 - New ingredients
 - Optimization for different scenarios
- Good Intrinsic IM properties (as tested so far)
- Good Performance (Par with Existing Systems)
- Potential for COST SAVINGS in Ammunition
 - Change from "hi-frag" to 1340 steel;
 - Recycle / demil (not economical for cast-cured)
 - Easier to process than Composition B
 - Less shrinkage; melts and cools faster; no post-cycle heating?
- Barely Scratched the Surface for these Materials
 - Compare with ≈25 years for cast-cured and other PBX's

GD-OTS 120mm HE-T Ammunition

 Direct fire ammunition developed by NAMMO
 "Americanized" for Abrams Tank
 IM Requirements met by GD-OTS Systems Design
 Contains 6 Lb of PAX-34 HE (DNAN/NTO/TATB):

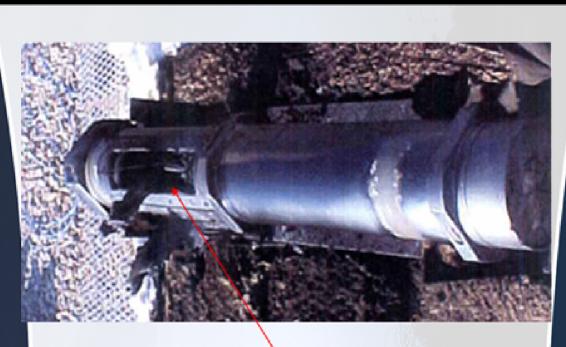
GD-OTS 120mm HE-T Ammunition
 – IM Testing of GD-OTS Improved Ammunition
 Bustle Test:

Bustle Test Results

- No sympathetic detonation of acceptor cartridges
- The various features built into the Abrams turret effectively vented the pressure generated during the explosive event.
- Majority of propellant was consumed during the explosive event
- Peak pressure measured within the ammunition compartments was within threshold criteria.
- Results considered successful.
- It is possible to store HE-T rounds in the Abrams turret ammunition compartment without violating crew survivability criteria.

GENERAL DYNAMICS Ordnance and Tactical Systems

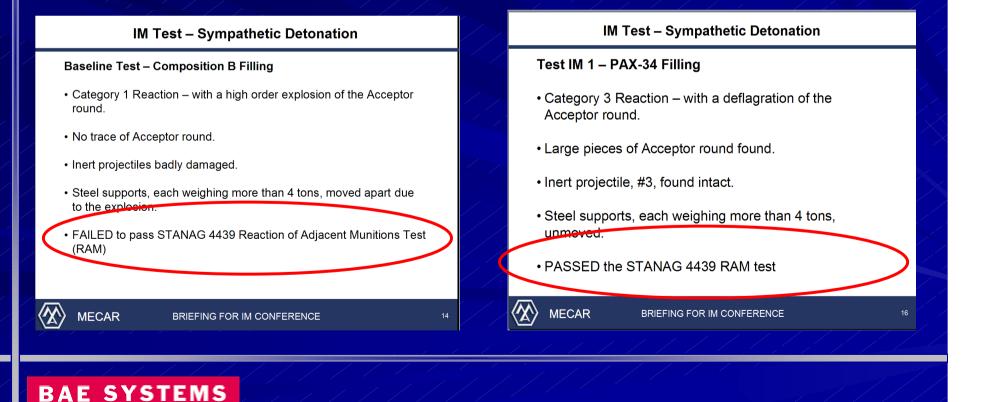
GD-OTS 120mm HE-T Ammunition
 – IM Testing of GD-OTS Improved Ammunition
 Bustle Test:
 Sympathetic Detonation Testing:



Slow Cook-Off Test Results Design 1

Design 1: (Fuze Venting Sleeve):

- Type V Reaction, burning only
- HYBRID Propellant burned
- PAX-34 burned


PA 171 effectively vented the pressure and no explosive event occurred

GENERAL DYNAMICS Ordnance and Tactical Systems

MECAR 120mm Mortar Ammunition

 IM Testing Underway
 Sympathetic Detonation Testing:

Concluding Remarks

Life Beyond PBX for Melt-Pour Explosives?

- DNAN; NTO; TATB etc. "new" ingredients
 Basis for a Common Filling for Ammunition
- Able to achieve new levels of IM / performance
- Potential to REDUCE ammunition costs (e.g. "hi-frag" steel)
- Products Available on production scale
 Optimization underway for new products
 Affordable, available in 1000,000 Lb+ quantities
- Explosives Tested in Weapon Systems
 - Passing IM tests (so far, so good!)
 - Achieving good performance

References

1	Encyclopedia of Explosives and Related Items, Vol.I, Picatinny Arsenal, p. A448, 1960.
2	J. Niles, private communication to A. Wilson regarding the establishment of DNAN as an insensitive TNT replacement.
3	S. Nicolich, J. Niles (TACOM-ARDEC), Dr. D. Doll, M. Ray (Thiokol Propulsion, ATK Corporation), M. Gunger and A. Spencer (GD-OTS); 'Development of Novel High Blast High Fragmentation Melt-pour Explosives', NDIA IM-EM Symposium, 10-13 March 2003.
4	A. Wilson, E. LeClaire <i>et al.</i> , 'Synthesis of Energetic Materials at Holston Army Ammunition Plant', NDIA IM-EE Symposium, 10-13 March 2003.
5	A. Wilson <i>et al.</i> , 'Scale-up and Large Scale Production of 2,4-dinitroanisole (2,4-DNAN) at Holston Army Ammunition Plant, NDIA IM-EM Symposium, San Francisco, November 2004.
6	A. Wilson, P. Vinh, W. Kuhnle, B. Alexander, 'Production Improvements for the Melt Cast Explosive PAX-21', NDIA IM- EM Symposium, San Francisco, November 2004.
7/	J. Gaines <i>et al.</i> , 120mm High Explosive – Tracer (HE-T) IM Development and Testing, NDIA Guns and Missiles Conference, 27-30 March 2006, Sacramento, CA.
8	S. Haye <i>et al.</i> , (MECAR), 'Melt-Cast IM Explosive Evaluation in 120mm Mortar Ammunition', NDIA IM-EM Symposium, 24-28 April 2006, Bristol, UK.