Laser Induced Deflagration of Energetic Materials

Eric Collins Jennifer Gottfried

U.S. Army Research Laboratory, Aberdeen Proving Ground, MD

Background

- Large scale tests are conducted to characterize performance of explosives
 - Expensive, time consuming, must be conducted in proper facility to protect personnel and equipment from blasts
- Hypothesis: Characteristics from the deflagration of explosives such as temperature, energy generation and signatures, can be analyzed in a laboratory setting using small amounts of material
 - Cheaper, faster, safer

2. Diagnostics

- New techniques were developed with laboratory diagnostics to characterize the performance of energetic materials using only 15-20 mg of material
 - Time resolved temperature from high speed color camera and photo receivers
- Relative energy output
- Emission signatures from spectrometer
- Ignition source Nd:YAG laser
 - Energy = 850 mJ, Pulse Width = 6 ns, Wavelength = 1064 nm

Temperature – High Speed Color Camera

Color high speed camera used as pyrometer

- Temperature of deflagration events was calculated from a calibrated high speed digital color camera
- Demosaicing algorithm was used to create a full color image from the color filter array

4. Temperature – Photo Receivers

Ratio pyrometry technique

- -Band pass filters of 700nm and 1200nm were placed in front of photodiodes
- -Assumes gray body process where emissivity is same for all wavelengths
- Equations derived from Planck's equations

Shah, K. Ross, H. "Measurement Techniques for Data Recording and high Temperature Measurement," 2010

-HNS Visible 3,5 EW) 3 Optical Power 2,5 1,5 0.5 50 Time (ms)

Adiabatic Flame Temperatures (K) (CHEETAH 6.0) RDX HMX HNS TATB PETN CL-20 DNAN

TNT RDX HMX HNS TATB PETN CL-20 DNAN Energetic Materials

Optical Energy Output

Time resolved light intensity Oxygen Balance % 11 **Detonation Velocity** -10.9 10 -10.1 8 TNT RDX HMX HNS TATB PETN CL20 DNAN Duration (ms) 73.1 10 Energy (μJ) 1 0.1 0,01 TNT RDX HMX HNS TATB PETN CL20 DNAN

Signatures

Summary

- On average, the difference between the adiabatic flame temperatures and experimental temperatures was 22% with the high speed camera and 23% with the photo receivers
- Duration of the deflagration was shorter for compositions with an oxygen balance closer to zero
- Compositions with high detonation velocity resulted in low deflagration energy output
 - -Exception of CL-20 due to its high sensitivity and complete propagation throughout the sample

Acknowledgements

The authors gratefully acknowledge assistance in calculating temperature from John Densmore (LLNL). Research was accomplished under Cooperative Agreement Number W911NF-12-2-0019.

Approved for Public Release - Distribution Unlimited

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.