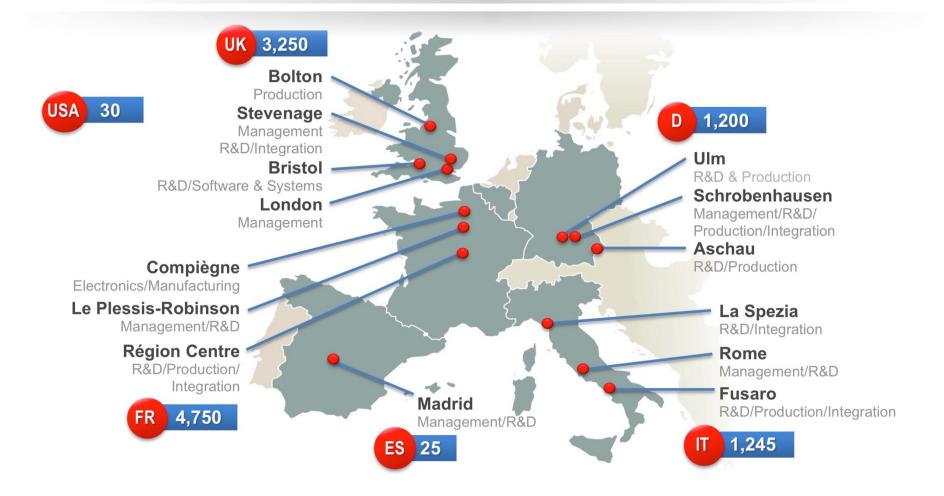


MBDA – Multi-National Missile Programmes

IMEMG European IM Day 18-19 May 2017

David Crofts Head of Complex Warheads Centre of Excellence

- MBDA formed from a consolidation of European missile companies in Fr, UK & Italy, Germany, with Spain more recently joined.
- Fully integrated European defence group with a single management and operating structure
 - Which spreads a coherent strategy into the 5 nations
 - But also has privileged national access, by sustaining capabilities, security of supply, and through life management.
 - Significant focus on exports, limits costs to the national MoDs
- Extensive experience of delivering international programmes including
 - Meteor, Storm Shadow/SCALP, Aster, Sea Venom, Taurus



Page : 2 Reference :

More than 10,000 people worldwide, 60% in Technical/Engineering functions

Page : 3 Reference :

Maritime

Air Launched

MISSILE SYSTE

Anti-Ship

- Exocet MM40, AM 39, SM 39
- Teseo Mk2
- Marte Mk 2,
- Marte Mk 2 ER
- Sea Venom

Naval Air Defence

- Aster 15 & 30 PAAMS
- VL MICA
- Mistral
- Sea Ceptor

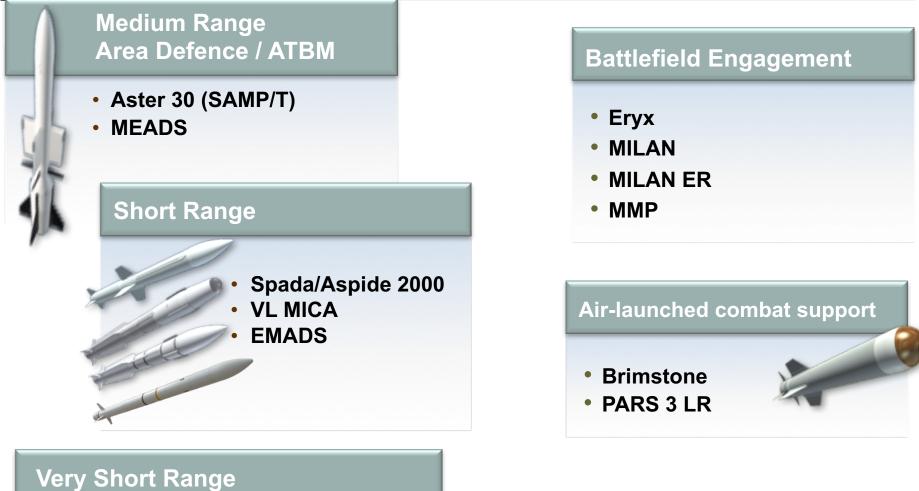
Deep Strike

MdCN

Page : 4 Reference :

- MICA
- Meteor

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2017.


MANPADS

Mistral Reference :

Ground Based Air Defence

Battlefield / Combat Support

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorisation of MBDA. © MBDA 2017.

Promoting International Co-operations

Page : 6 Reference :

- MBDA's Missile systems must operate reliably throughout their lifecycle.
- Safety need to prevent unintended explosive response of missiles for the safety of our Armed Service Personnel.
- Examples which contain effective design measures to protect against unintended initiation are
 - Storm Shadow
 - ASRAAM
 - Meteor
 - Brimstone

Long range cruise missile Short range air-air Beyond visual range air-air Smart anti-armour

• Simplistically!

- IM Hazards = Impacts or Heating
- Response dominated by
 - I. Insensitiveness of explosive
 - II. degree of containment
- If the aggression destroys the containment, the response of an insensitive explosive will be "**no more severe than burning**"

• But

- Our air-launched missiles live in a severe environment
 - long air carriage life
 - Resistant to heat (and cold), vibration, shocks, and flight loads.
 - Target penetration.
- Need for robustness often conflicts with good IM performance.
- Missiles have very different requirements, so design for IM needs to be very specific.

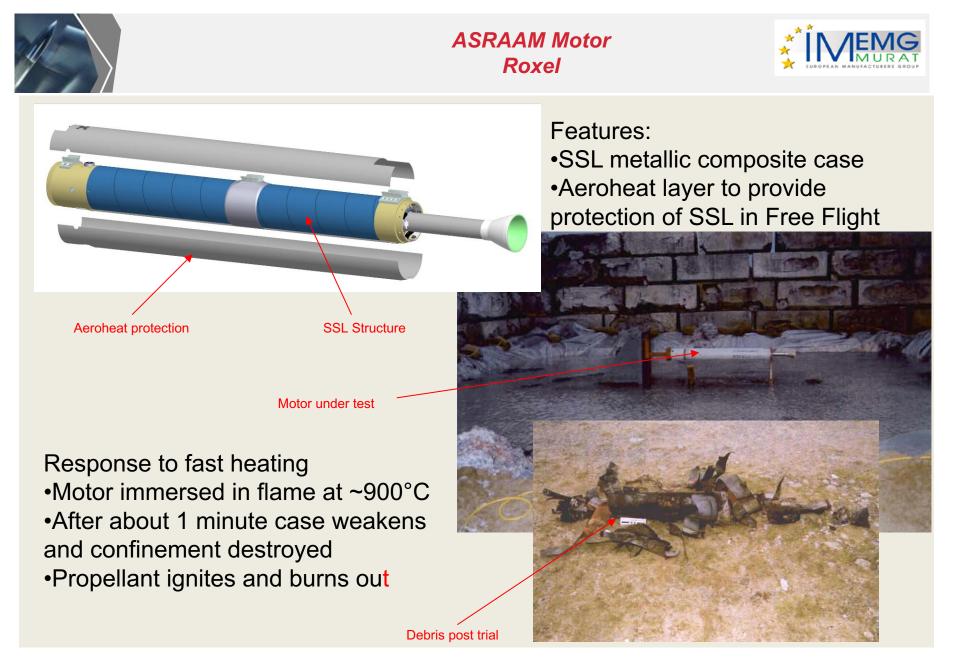
Case Study BROACH in Storm Shadow SCALP

DESIGN FEATURES

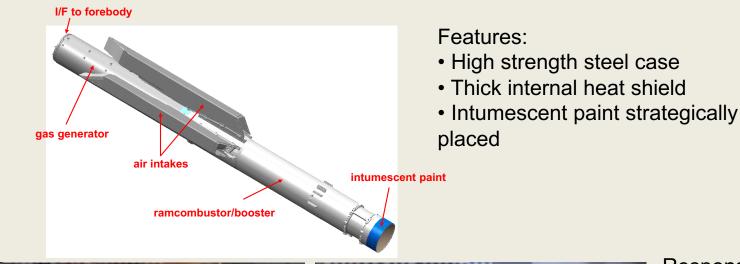
High Strength Steel Casing	Fragmentation & penetration performance. Protection of charge.	
Polymer Bonded Explosives	No DDT, low explosiveness, shock insensitivity.	
Insensitive Boosters	Thermal stability, shock insensitivity.	
Polymeric Lining	Thermal and mechanical insulation.	
Vent ports (FTB)	Gas vent path from decomposing PBX.	
Thermal Igniter (FTB)	Controlled ignition point.	
Frangible aluminium closure (PC)	Pressure relief of decomposing PBX.	

IM ASSESSMENT			
Fast Heating	Type V	Missile test	
Slow Heating	Type V	PC / FTB test	
Bullet Impact	Type V	PC / FTB test	
Fragment impact	Type V	Assessment / readacross	
Sympathetic Reaction	Type IV	Container test	

Page : 9 Reference :



- ASRAAM and Meteor are both very high performance systems
 - Fierce aero-heating owing to high Mach No.
 - ASRAAM > 1000°C for a few tens of seconds
 - Meteor > 500°C for a few minutes
- To achieve a good response to Fast Heating (FCO)
 - The case of the motor must degrade before propellant cook-off
 - The boost charges are composites and will react at >200°C
- Our Rocket Motor suppliers were faced with very difficult design requirements
 - ASRAAM– Roxel, Summerfield
 - Meteor- Bayern Chemie, Aschau



Page : 11 Reference :

Meteor Motor Bayern Chemie

Response to fast heating (FCO test) • Motor immersed in flame at ~900°C • Case weakens after

- ~1-2 minutes
- Propellant ignites, mild pressure burst

 Propellant burns out mildly

Page : 12 Reference :

Brimstone2 TDW & Roxel

TDW IM Warhead

Roxel IM Rocket Motor

- Tandem warhead with KS33 HMX based PBX main charge
- Vulcan rocket motor with elastomer modified cast double base propellant
- IM mitigation features and low explosiveness compositions enabled:-
 - State of the art IM characteristics
 - Cost savings for manufacture, storage and transport
 - Improved flexibility for operational usage

Type V Burning Response in BI Trial

Type IV Response in FI Trial

- IM is a key requirement for missile systems
- MBDA works closely with major international sub-contractors & subsidiaries to develop technologies to provide effective solutions.
 - e.g. Roxel, Bayern Chemie, TDW, BAE Systems, Eurenco, Chemring, Thales & Saab Bofors
- Integrating IM solutions without degrading missile performance is a complex (and expensive) activity
 - This trade will always represent a serious challenge.
- IM solutions have to be carefully tailored to specific applications
 - One IM solution is unlikely to be universally applicable
 - Requires a significant investment for each new system

Page : 14 Reference :

- For Energetic Materials, complex supply chain and extended production run can result in
 - Facility closure, consolidation and transformation
 - Material obsolescence
 - Change of suppliers
 - Change in manufacturing locations
 - = requirement for Re-qualification.
- The following re-qualification activities may be required:
 - Explosives qualification
 - Warhead / Motor Type qualification
 - Environmental, Safety / IM & Performance
- Robust characterisation of original material provides good baseline for assessment of new / replacement material.
 - can mitigate risk of time consuming & expensive Type requalification.
 - Translation between national test standards can provide significant benefits.

