

The 3rd European IM Day Amsterdam, 18-19th May 2017

SESSION 2 REGULATION 5 LEGAL FRAMEWORK

IM Policies & Implementations

National implementation

Philip Cheese standing for lan Carr

Team Leader Science and Technology DOSG, DE&S - UK MoD

Lt Col Morten Kjellvang

Chief of Ammunition Safety Section, Defence Material Agenc

The 3rd European IM Day Amsterdam, 18-19th May 2017

SESSION 2 REGULATION 5 LEGAL FRAMEWORK

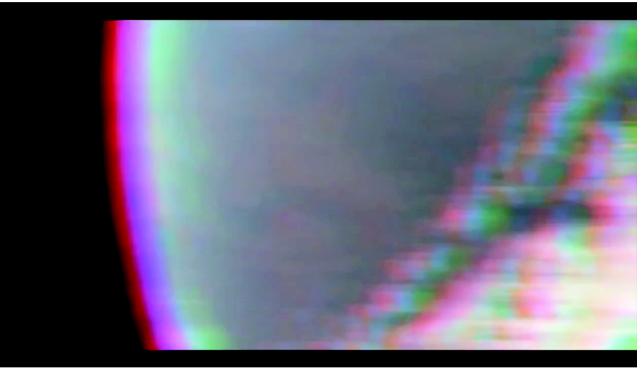
IM Policies & Implementations

National implementation

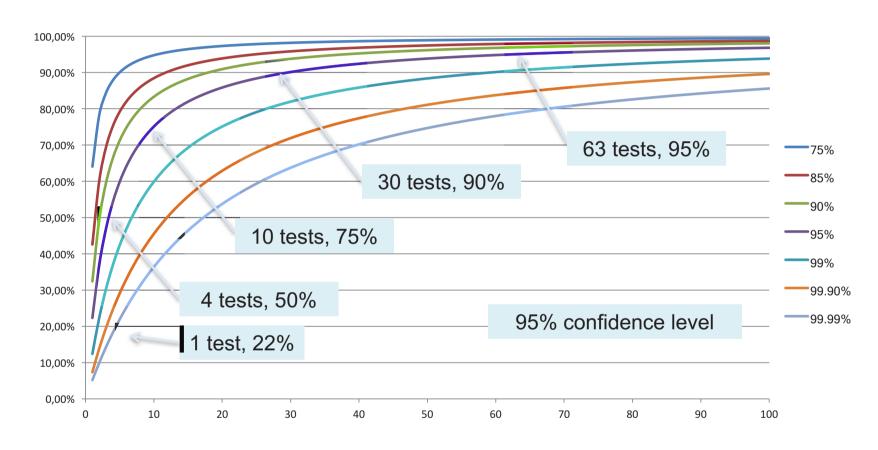
Philip Cheese standing for lan Carr

Team Leader Science and Technology DOSG, DE&S - UK MoD

DOSG Science & Technology

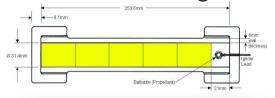

Issues in IM Policy & Regulation: Scarce Data, Variability & Theory

Ian Carr
DOSG Science & Technology Team Leader
19th May 2017



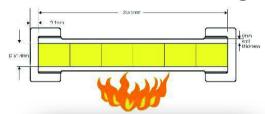
Scarce Data

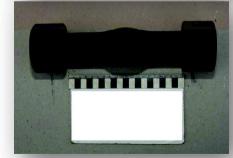
Confidence Intervals

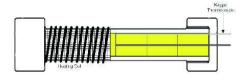

81 mm HE Mortar Bomb - Assessment

- Hazard Classification: HD 1.2
 - Single successful bullet attack
 - 10 "stack" tests on L15A3 (7), L15A4 (3). Up to 15 bombs per test
 - Although no mass detonation, some acceptors detonated
- IM Assessment: Type I Detonation (RDX/TNT filling)
 - Based on tube tests
- RATTAM threat 0.5 "AP
 - What is the risk?
 - HD or IM assessment?
 - Which of these should be used for e.g. Ships Explosive Safety Case?

Variability: Explosiveness


EMTAP 35: Internal Ignition




EMTAP 41: Fast Heating

EMTAP 42: Electrically Heated

Screening for DDT

Category	Reaction Description	Observation	
0	No reaction	From weighing	
0/1	Burning decomposition	No disruption of test vehicle	
1	Pressure burst due to burning/decomposition	Assembly ruptured but one fragment approximates to original weight	
2	Deflagration	2 to 9 body fragments	
3	Explosion	10 to 100 body fragments	
4	Detonation	>100 test vehicle body fragments showing evidence of detonation	

Good Response

LOW

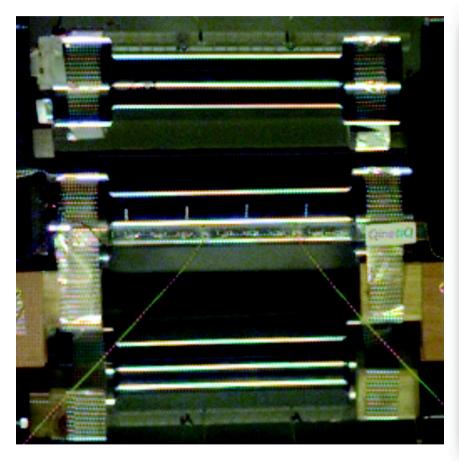
Explosiveness

HIGH

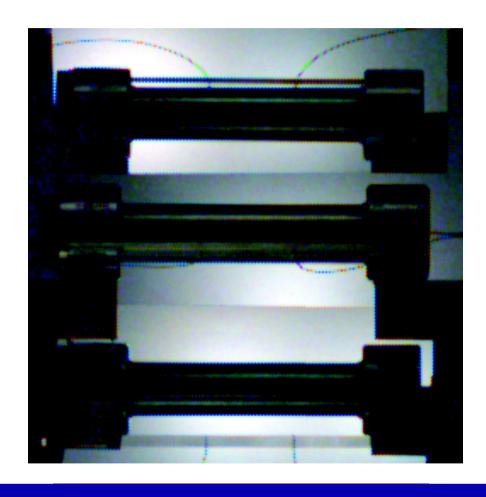
Poor Response

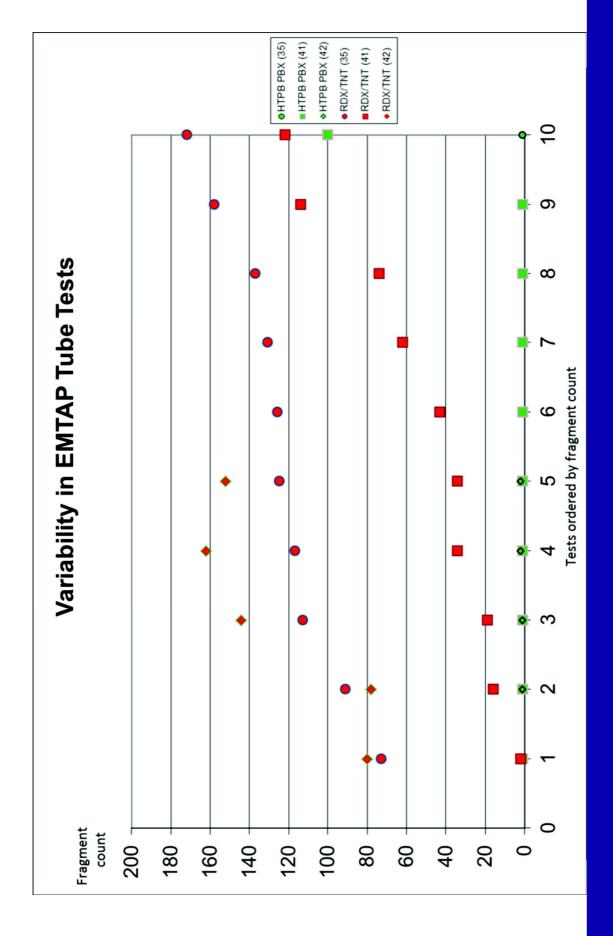
T

2


3

1


Low Explosiveness



High Explosiveness

The Question

- Is the variability observed in laboratory scale tests also found in real weapons?
- DOSG ST has begun a series of trials to investigate
- STANAG 4241 Bullet Impact on Mortar Bombs, HE Shell and GP Bombs

81 mm HE Mortar Bomb – RDX/TNT

Aim Point: Above the Obturating Ring

81 mm HE Mortar Bomb – RDX/TNT

Aim Point: Below the Obturating Ring

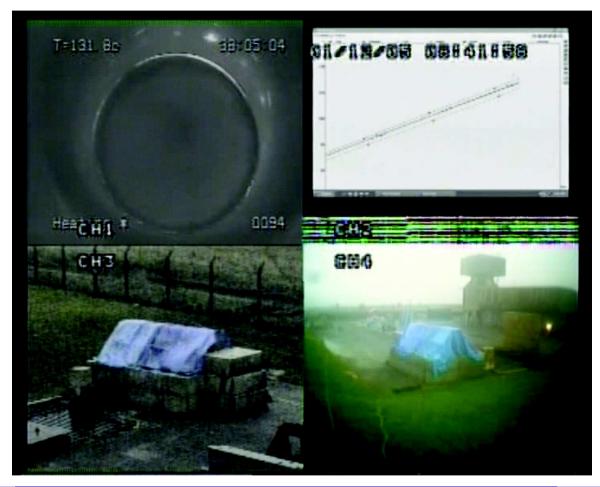
Bullet Impact causes delayed propellant initiation

81 mm HE Mortar Bomb – RDX/TNT

Burning Reaction (skip to end for fuze reaction)

Bullet Impact - No Reaction

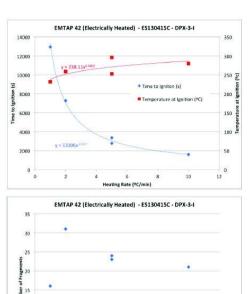
47 tests to date – all no reaction or burning

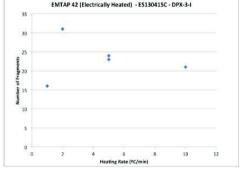


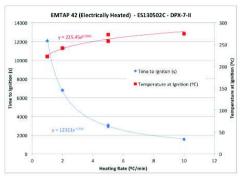
HE Shell: work in progress

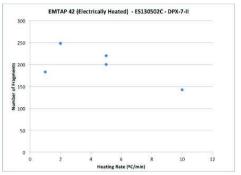
	Reaction	105 mm HE	155 mm HE	
	No Reaction	4		
	Burning		1	
	Deflagration		1	
	Explosion		10	
	Partial	7		
155 mm Burn	Detonation			m Detonation
<u>105 mm Bu</u>	Detonation		1	<u>)n</u>

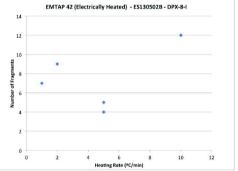
Theory: Cook-off











10% AI 20% AI

TTCP CP-4-48 Slow Cook-Off:

It took 3 years of meetings, workshops (inc. MSIAC), conferences, collaboration and testing to understand that:

- 1. SCO is not easy.
- 2. There is no single point solution for the answer to a SCO heating rate.
- 3. If through modelling, a testing hierarchy, small scale or full scale AUR testing it is determined that a heating rate of 6°F/hr (3.3°C/hr) is neither a credible threat nor validated to be a worse case reaction or violence scenario, then there should be protocol in place to test/validate reaction at an alternate heating rate more appropriate to the specific and unique munition under test.

Implications for Authorities

- Can't always trust the 'Admiral's Test'
 - Scarce data, variability and absence of theory
- Need to understand mechanisms/science
 - Hence AOP-39 protocols
- Need the Whole Body of Evidence

IM Compliance – Systems Approach

- Aspects to be considered for IM:
 - **Energetic Materials**
 - **Design & Construction**
 - **Tactical Packaging**
 - **Logistic Packaging**
 - **External Mitigation**
 - Platform integration
 - Statistics!

Issues for Manufacturers

- Should be designing safer weapons
 - Not just to pass "the" test
- Need confidence in design
 - Theory, statistics
- The contract?

UK approach to new procurement (replacing the IM Waiver)

1) IM policy incorporated into initial URD as a KUR

- FLC/ODH shall include need to comply with JSP520 Pt 1
- PT to support FLC/ODH to develop IM requirement

2) Identify Proposed Target IM Signature prior to Initial Gate

- Produced by IMAP on request
- Requirements, current technology & materials, MTDS
- Derived from technology available does not consider cost

3) Identify Contractual IM Signature for Main Game

- Owned by PT; is response to Target Signature
- Agree with suppliers/manufacturers/FLC/ODH what is possible (time, cost & performance)
- Identify, justify & agree (IMAP) deviations from target signature

4) Review throughout lifecycle

- PT must develop a strategy for delivering IM Compliance
- Hazards are captured and managed effectively

Conclusions

- Manufacturers, procurement organisations and authorities need to work closely from the outset to meet requirements as far as current technology permits, whilst managing user expectations
- More research is needed ©

