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    1.1 Energetic materials in modern weapons 

Effective destructibility 

& 

High safety 
CHE IHE 

Defence Sci. J. 60 (2010) 137-151 

J. Am. Chem. Soc. 135 (2013) 9931-9938  

replacement  
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    1.1 Energetic materials in modern weapons 
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1.2 The research object: CL-20, HMX, RDX 

First synthesized in 1987 

Restriction for application: high sensitivity 

I. Introduction 

Most powerful EM in practical use 

Propellants Explos. Pyrotech., 2014, 39, 51-58  

RDX HMX 



difficult to gain balance 
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    1.3 Reduce the sensitivity of high explosives 

High 

energy 
Low 

sensitivity 

Cocrystals 

Recrystallization         nano  

      Coating              cocrystal 
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Shell Self-nucleation    Degree of coverage    Control of thickness     High shell Strength 

Key points for explosive coating techniques   

60 % coating 

Nat. Mater. 20 (2015), 143 

Angew. Chem. Int. Ed. 47 (2013), 522 

+ 

    1.3 Reduce the sensitivity of high explosives 
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    1.4 Microencapsulation via in-situ polymerization 

     Microencapsulation 

 protect active substance 

 controlled release 

   In-situ polymerization 

 monomer intercalation 

 chemical polymerization 

 extraordinarily high coverage 

 high shell strength 

Adv. Colloid Interfac. 207 (2014) 65-80. 

Polym. Rev. 52 (2012) 142-188. 



  Candidate: MF resins 

 melamine + formaldehyde  

 widely applicable 

 facilely prepared 

 economical, adjustable 

MF resins performances  

 outstanding thermal stability 

 mechanical strength 

 relatively high density 

 water and aging resistance 
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    1.4 Microencapsulation via in-situ polymerization 

Chem. Eng. J. 249 (2014) 27-33. 

    Extensive application  

 phase change materials 

 self-healing composites 

 flame retardants 

 dyes 

 self-healing 

dyes 

flame retardants 

         Great potential 

 reduce impact sensitivity  

 improve thermal stability  



II. CL-20/TATB core-shell coating  



Energetic 

coating 

HMX 

RDX 

CL-20 
NTO 

LLM-105 

TATB 

TNT 

FOX-7 

Sensitive 

explosives 

Surface modify 

HNS 

insensitive 

explosives 

high 

explosives 

shell core 

insensitive explosives 

Estane: for fixation  

CL-20/HMX 

TATB 

High energy & Low sensitivity 



II. CL-20/TATB core-shell coating  

CL-20/TATB 5% TATB (800 nm) coating CL-20 

5% TATB (800nm) physical mixed 5% TATB (20 μm) coating 

 Using submicron TATB as raw material; 

 Tween-20 or PVA surface modification; 

 Compact coating TATB  on CL-20 surface was obtained. 



II. CL-20/TATB core-shell coating  

10 um 



TATB: 5%  TATB: 15%  TATB: 25%  

2.1 Surface of the composites with TATB increased 

Products of molding powder  Hollow shell after etching  

 Zhijian Yang, et al. Propellants, Explos. Pyrotech., 2014, 39(1): 51-58.  



2.2 Elements distribution of surface by N1s XPS spectrum 

~100%  

  coating  

II. CL-20/TATB core-shell coating  



2.3 Sensitivity studies 

Sample  TATB  

[%]  

Size of TATB  

[μm]  

TATB introduced  H50*  

[cm]  

Friction 

sensit.  

[%]  

CL-20  0 / / 16.0 100 

CL-20/TATB-1  5 0.8 physical mixing 23.7 100 

CL-20/TATB-2 5 0.8 core-shell coating 49.6 68 

CL-20/TATB-3 5 20 core-shell coating 30.5 92 

CL-20/TATB-4 25 0.8 core-shell coating 56.7 0 

Table 1: Impact and friction sensitivity of CL-20/TATB composites  

* 2 kg drop weight for H50 

II. CL-20/TATB core-shell coating  

 Zhijian Yang, et al. Propellants, Explos. Pyrotech., 2014, 39(1): 51-58.  
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3.1 Research approach 

heating+stiring 

H2O in 

H2O out 

explosives 

Surface in-situ polymerization process  

Polymer monomer: MF, isoprene… 

Polymerization initiated by heating 

Surfactant 



3.2 Appearance & structure of coated explosives    

MF resins 

polyisoprene 

0.2%                      0.6%                 1.2%   

0.3%                      1.5%                 2.5%   

agglomerated poor coating           nice coating 

Process  

Optimization 
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3.2 Appearance & structure of coated explosives    

Samples Polymer/wt% Polymer introduced H50*/cm 

CL-20 0 / 16.3 

CL-20/MF 0.6 core-shell coating 19.6 

CL-20/MF 1.2 core-shell coating 23.2 

CL-20/MF 3.0 core-shell coating 42.8 

CL-20+MF 3.0 physical mixing 18.7 

CL-20/polyisoprene 1.5 core-shell coating 25.7 

CL-20/polyisoprene 2.5 core-shell coating 33.4 

CL-20+polyisoprene 2.5 physical mixing 15.9 

* 5 kg drop weight, 25cm, 50mg samples 

More controllable system: MF resins!   

（XPS） 
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3.2 Appearance & structure of coated explosives    

RDX RDX@MF 

HMX HMX@MF 

CL-20 CL-20@MF 

       Coating structure 

 Surface: uniform, compact; 

 Coverage: ~ 100%;  

 Polymer: all coated; 

 Strength test: fairly high. 

III. Microencapsulation via in situ polymerization  



3.2 Appearance & structure of coated explosives    

   (Physical mixed sample)        (Shell after CL-20 etching) 

   (FTIR)                                        (XRD) 

 Mixed: negligible coating 

 Etching: ethyl acetate 

 Shell thickness: 1~2μm 

 ε-CL-20 form maintained 

III. Microencapsulation via in situ polymerization  



3.3 Impact sensitivity 

Markedly reduced 

sensitivity!! 

  Polymer buffer system: 

 firstly attacked  

 dissipate impact energy  

III. Microencapsulation via in situ polymerization  



3.4 Proposed mechanism 

Schematic mechanism for microencapsulation via in situ polymerization 
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3.4 Proposed mechanism 

Key role of  

additive PVA 

surfactant 
surface 

wettability 

high 

coverage  

PVAPVA

molecular 

skeleton 

improve 

flexibility 
reduce 

 sensitivity 

brittleness of MF resin  

fiber-forming performance 

 Zhijian Yang, et al. Chem. Eng. J., 2015, 268(1): 60-66.  
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Traditional coating 

In situ polymerization compact, uniform, high coverage & strength 

loose, nonuniform, low coverage & strength  

That is the in situ!! 

An analogy 

cobweb spider 

silkworm Silkworm chrysalis 



IV. Multilevel and tridimensional desensitization 



IV. Multilevel and tridimensional desensitization 

    Outstanding performances 

 (CL-20) =90% 

 D > 9000m/s;  

 Impact E50 > 60J (5kg H50>120cm); 

 Friction P = 0% (>360N). 

Synergistic 

effect 



V. Conclusions and summary 



 Great potential for Several new strategies for reducing the 

mechanical sensitivity of CL-20; 

 

 Structure: compact, uniform, firm, adjustable and synergistic; 

 

 Performance: visible reduced impact sensitivity and reserved 

high energy; 

 

 Our works will go on... 

• more systems 

 

• fine adjustment & control 

 

• molding performance 

V. Conclusions and summary 
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Strategies 

Physical 

mixing 

Core-shell 

coating 

Modified 

coating 

In situ 

polymerization 

Multilevel  

desensitization 



Energetic coating 

High 

energy Low sensitivity 

experiment 

control 

     What is it？ 

     Why do it? 

HoW to… 
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