Novel Slow Cook-off Test Method to Replicate Worst Case for Munitions Containing Internal Fuel

2018 Insensitive Munitions and Energetic Materials Technology Symposium

Benjamin Blazek*, Jerry Webb Naval Air Warfare Center Weapons Division China Lake, CA USA

Impetus For This Work

- Several munitions subjected to SCO which contained flammable liquid fuels ignited into a fuel fire
- These munitions:
 - Contained live energetic components and fuel
 - Exhibited a reaction from something other than the main explosive which dispersed and ignited the internal fuel
 - This reaction sometimes launched energetic components
 - Varied landing location.
- Energetic components which landed or remained in the fuel fire
 - Fuel fire engulfs the already thermally damaged components
 - Reactions of energetics in this fire were more severe than those exhibited during standard FCO environment

- Project Goals:
 - Design test to <u>consistently replicate</u> the worst case environment.
 - Design munition to pass worst case reaction environment.

- Project Goals:
 - Design test to <u>consistently replicate</u> the worst case environment.
 - Design munition to pass worst case reaction environment.

- Project Goals:
 - Design test to <u>consistently replicate</u> the worst case environment.
 - Design munition to pass worst case reaction environment.

- Project Goals:
 - Design test to *consistently replicate* the worst case environment.
 - Design munition to pass worst case reaction environment.

- Project Goals:
 - Design test to *consistently replicate* the worst case environment.
 - Design munition to pass worst case reaction environment.

- Project Goals:
 - Design test to <u>consistently replicate</u> the worst case environment.
 - Design munition to pass worst case reaction environment.

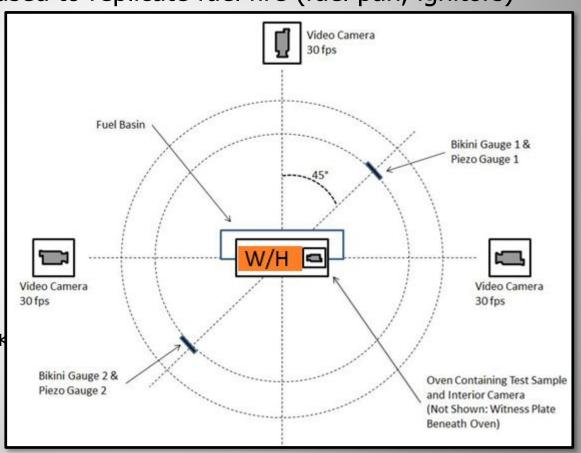
- Project Goals:
 - Design test to *consistently replicate* the worst case environment.
 - Design munition to pass worst case reaction environment.

- Project Goals:
 - Design test to *consistently replicate* the worst case environment.
 - Design munition to pass worst case reaction environment.

- Project Goals:
 - Design test to *consistently replicate* the worst case environment.
 - Design munition to pass worst case reaction environment.

UNCLASSIFIED//FOUO

Test Design



- To extent possible, test met MIL-STD-2105D and STANAG 4382
- FCO test elements were used to replicate fuel fire (fuel pan, ignitors)

Design Features

- Fuel used in system
- "Clam-Shell" SCO Oven
- Fuel Pan beneath Oven
- Steel doors close pan
- Oven affixed to door
- Seams sealed for fumes
- Elec. winches open oven*
- Elec. ignitors for fuel*
- *Redundant pairs

UNCLASSIFIED//FOUO

Test Design

SCO Portion: Oven closed and sealed for SCO portion

Test Design

Fuel Fire portion: Oven open, fuel pan uncovered, item exposed

UNCLASSIFIED//FOUO

Test Design

- Tent and "roof" around oven to protect against wind and rain
- Instrumentation:
 - 1. Internal cameras
 - 2. Thermocouples:
 - Air near item
 - Item skin
 - Routed to item stand so in place during entire test
 - Blast Pressure Gauges

UNCLASSIFIED//FOUO **Test Conduction**

UNCLASSIFIED//FOUO

Test Results

Successes:

- SCO and Fuel Fire features functioned successfully
- Fuel fire similar as system test
- Instrumentation recorded successfully
- Seals prevented ignition issues
- New mechanism functioned as designed

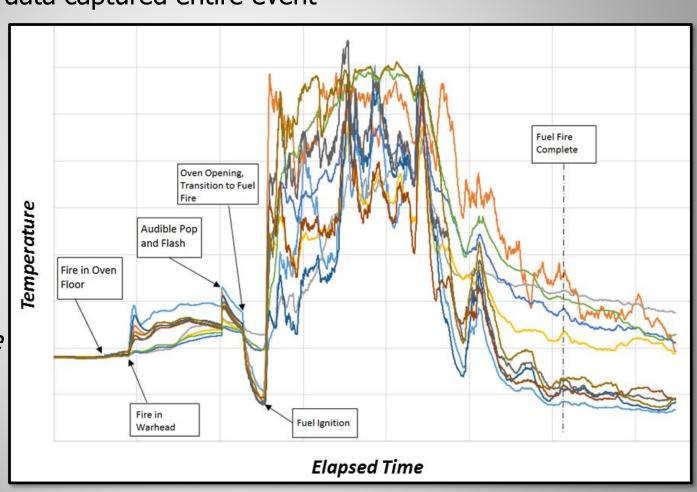
Issues:

- Fuel fire ignition took longer than desired
- Wind did influence fuel fire

Potential improvements:

- Send ignition command same time as oven opening
- Improve wind barriers on sides not obstructed by oven halves

UNCLASSIFIED//FOUO Test Results



Thermocouple data captured entire event

Fuel fire ignited 83 seconds later than system response

Low consequence but room for improvement

Summary Summary

- Designed a novel test which replicated the worst case SCO environment of a system with internal fuel
- Novel test successfully replicated a SCO with subsequent fuel fire
 - Reliability provided through redundant systems
 - FCO features increased repeatability of environment
 - Reduced cost and tests
 - Similar environment
- Test successfully assessed design solutions
- Have identified improvements, particularly for the fuel fire transition
- Item configuration and some test setup should be tailored to system of interest

UNCLASSIFIED//FOUO Acknowledgements

- This project received funding from the Insensitive Munitions Advanced Development and Insensitive Munitions Technology Transition Program
- Special gratitude to Redstone Test Center personnel for their contributions in test design and successful conduction of these unique tests
- Also thankful for contributions from engineers at Naval Air Weapons Center Weapons Division, China Lake