IM warheads & rocket motors for tactical missiles: progress to date, future opportunities & challenges

Charles Jones (CJCS) & Jim Fleming (FCIT2 Ltd)

EMIMT Symposium, Sevilla, 21-24th October 2019

Abstract # 22168

Issue 1d

1. IM status, costs & the route to IM

- Data is presented for IM ratings of SRM's & w/h's
- Focus is on what has been achieved for missiles & upgrades; the Start of the Art is presented subsequently
- The data is based on US, French, & UK tactical missiles with significant production since 1980 (most but not all such missiles)
 - 39 missiles & a further 6 variants
 - Six sectors but Ground to Air & Air-to-Air dominate
- Accompanying paper describes the methodology for establishing
 - IM Performance Indicator (PI) rating
 - IM score weighted, (IM_w) to take account of the number of each missiles in service with their Net Explosive Quantity (NEQ)
- Spend on IM, the steps to introduce it & the durations, to the Out of Service Date (OSD), are also considered

Aim in this section is to illustrate actual inventory status/evolution rather than best in class

IM rating as missiles enter service: SRM's*

- From 1980, there has been a general increase in IM performance but a few missiles with poor IM motors continue to enter service, e.g.
 - JAGM, with Hellfire motor (2019)
- Some very high IM ratings, e.g. Brimstone2, VT1, etc
- Note: some deployed weapons may have better IM results due to packaging, missile containers, etc (applies to w/h also)

^{*} Solid Rocket Motors (SRM's)

IM rating as missiles enter service: Warheads

- Similar trend as SRM's
- Significant improvement from early '80's, coincident with move to improved PBX's

IM_w: SRM's

- The inventory (missile quantities x NEQ, remaining in-service) is dominated by several missiles with relatively low IM motors
 - e.g. AIM7M/P, GMLRS
- Only 1 high Q*NEQ missile retired
- Until now, the overall IM of the inventory has essentially remained constant

IM_w: Warheads

 Similar trend to SRM's, IM_w has remained nearly constant since 1995, but significant increase 1980 to 1985

IM spend

- The US Tactical missile market is ~\$10 Bn (2019) with a further \$15Bn for strategic & theatre defence
 - UK & FR tactical combined < \$3 Bn
- Warheads & SRM generally each represent 5-15% of a missile's price, i.e. ~\$2.5Bn total
- Current total RDT&E IM spend for US, FR & UK is estimated to be ~\$55M/year (US recently \$45M)
 - i.e. < 0.5% of missile spend
 - Estimate same again for Qualification & NRE
- Energetics typically cost <25% of warhead & <10% SRM

FY2019 DoD budget (\$ Bn) - total \$32.7Bn

Joint Munitions & Advanced Tech Funding (\$M)

Extended development & deployment times, with or without IM

- Average, recently, 9 years from dev start to In Service Date (ISD)
 - No IM focus on missiles listed, but retrofits sometimes require similar timescales
- Surprisingly few IM insertions (retrofits)
 - US
 - Warheads: AMRAAM & Hellfire II (AGM-114K)
 - SRM's: only GMLRS
 - UK: Brimstone2, both the SRM & w/h
 - FR: Super 530D SRM (KFRP composite case)
- Duration ISD to OSD typically > 35 years

Missile	Dev Start	ISD	Current Variant	
Sidewinder	1946	1953	AIM-9X	
TOW	1963	1968	TOW-2B	
Hellfire	1974	1982	AGM-114R	
AMRAAM	1979	1988	AIM-120D	
RAM	1976	1992	Block 2	
GMLRS	1998	2006	GMLRS-IM	

IM route to production: energetics & structures

- Initial research followed by characterisation
 - Legacy molecules: Flow reaction, CONUS/equivalent, environmental
 - New molecules: Higher energy, REACH, etc
- New manufacturing methods, where required (e.g TSE, RAM, 3D printing, flow reaction, etc)
- Initial product development
 - Initial motor & warhead trials, ageing
 - Structures: impact of moisture, ageing, cumulative damage, etc.
- Higher TRL tests & qualification
 - vibration, shock, IM sub-system
 - Full sequential qualification & flight trials, fatigue, lightning strike, etc.
 - Certification (CofD, etc)
- Production
 - Potentially new facilities &/or possibly higher UPP (at least initially)

e.g. 9 years

2. Progress

- SRM's & warheads: comparison to other sub-systems
- Non homogenous cases & warheads
- Highlights of missile successes
 - Brimstone, ASRAAM, GMLRS, AMRAAM
- Implementation difficulties with energetic molecules
- Deployment not completed
 - JCM/JAGM, Sidewinder (C⁴Q), PAC3 with HTPE

2.1 SRM's & w/h: comparison to other s-systems

FCIT2 Ltd

- Some artillery shells with major IM improvements, e.g. M795 155mm (IMX 101)
- In many situations missiles have less associated (surrounding) protection;
 i.e. shoulder launched applications, aircraft mounted
- The IM rating of SRM's is particularly critical as, on average, they have 5 times the NEQ of the w/h
- State of Art: risks, or perception of these, result in reluctance to adopt IM

2.2 Non-homogenous cases & warheads

- Carbon fibre wound bomb bodies disintegrate instead of fragmenting
 - Introduced to lower collateral damage
 - SDB & BLU-129 in-service
- Rocket motors cases with Carbon & Kevlar (C/KRP)
 - Many produced for interceptors & ballistic missiles but significantly less for tactical
 - Tube launch/containerised mature; captive carry?
- Steel Strip Laminate (SSL)
 - Particularly attractive for exposed air carriage applications
 - Reduced wall thickness: trade off with higher mass, c.f. CFRP
 - Roxel UK only is currently mfg but earlier Israeli & US efforts
- CFRP & SSL structures require consideration of the resin operating temperature that results from aeroheating

2.3 Successes

- GMLRS motor
- Brimstone2 motor & warhead
- ASRAAM motor
- AMRAAM warhead

2.3.1 GMLRS motor

- "March 2016 IM rocket motor contracts were awarded to ATK and AR, for ~\$18M & \$14M, respectively. The two 22-month contracts result in qualified IM rocket motor for GMLRS*"
- Previously considerable further time & money, mainly to (&/or) by ATK, to develop IM motor
- Qual costs small in relation to overall GMLRS budget
 - \$500k RDTE & \$11.5 Bn for Proc (\$2003 FY); total 96,000 rockets
 - NRE for IM qual (of two designs) < 0.3% prog costs

https://www.esd.whs.mil/Portals/54/Documents/FOID/Reading%20Room/Selected Acquisition Reports/18-F-1016 DOC 32 Army GMLRS GMLRS AW SAR Dec 2017.p.

IM Technology:

Motor:

Composite Case & aluminised HTPB propellant.

Warhead:

Insensitive PBX Expl Load, Preformed Frag, IM Venting

CJCS

2.3.2 Brimstone2 motor & warhead

Motor

- IM now 90% but only 15% for Brimstone1 with Hellfire motor
- Brimstone is an example of IM plus improved capability for temp range & almost certainly Thermal Shock also
- But several major issues in qual
 - Bondline features, conduit cracks, etc
- Technology: EMCDB & SSL
 - EM/CDB powder process very different from slurry cast method used in USA for NEPE (XLDB)
- Slow route to production: SLIM TDP started 10 years before ISD, IM Hellfire FCT >20 years
- Warhead
 - TSC with MEW type for Brimstone3: see separate presentation later in Session 8B (by Dr Ing Reiner Gleichmar)

2.3.3 ASRAAM motor

- SSL case with reduced smoke Composite propellant plus Motor pre-ignition (pyrogen igniter) for SCO mitigation
- 530D (KFRP) is the only other in-service non-homogenous rocket motor case for fixed wing air carriage
 - ISD 1994; new production run currently ongoing
- Structural tests passed included
 - 2000 hrs immersion at 60 °C followed by 400 hours air carriage at 85 °C fatigue life
 - Launch & Hangfire loads at +85 °C
 - Pressure bursts over temp range -51 to +85 °C
 - Free flight loads at 120 °C (simulating aeroheating)

2.3.4 AMRAAM warhead

- Legacy warhead had Type I-III responses to fast fragment & FH/SH Type IV
- Two concepts for IM mitigation were tested*
 - Composite closure plate: unsuccessful no significant FCO or SCO mitigation observed at the system level
 - Alternate booster explosive: successful, concept implemented
 - Type V reaction achieved, at 2300 m/s
 - FCO & SCO maintained as deflagration
 - The revised warhead was introduced ~ 2003

*Impact to CH-6 Booster

The initial & qualification test programme is described in a paper at 49th Annual Fuze Conference (2005)

2.3.4 Deployment not completed

- JCM/JAGM Min Smoke motor
 - Composite case with cartridge loaded CDB charge with 15:1 TDR was demonstrated in 2006: IM rating of 90%
 - AUR funding cut twice, the second time terminally for the SRM;
 JAGM is entering service (Block I) in 2019 but with the Hellfire IM motor (IM rating only 15%)
- Sidewinder (C⁴Q)
 - De-risked many aspects of CFRP cases for air carriage; trials conducted in 1998-2001
 - No CFRP case has entered service for fixed wing air carriage (ASRAAM SSL, Super 530D with KFRP)
- PAC3 with HTPE
 - The IM improvement was not demonstrated at full scale: not implemented

2.3.5 IM implementation

- Important to have representative but demanding early testing for IM upgrades
 - Must not reduce Margins of Safety
 - Qualification isn't the time to find basic issues
 - But also need to consider "like for like" testing for non-IM requirements (e.g. Thermal Shock Cycling): does legacy pass same tests
- Government & prime contractor support is critical
 - Although performance must be "owned" by the suppliers, with a strong incentive to complete to cost & time
 - Continuous funding, not stop/start

3. New propellants: "n" & temp coeff (π_k)

- Fundamental requirements include: stability, suitable range of burn rates (including n and π_k), energy level (p x Isp), Tg, Ti, bonding, insensitiveness, suitable melting point, no phase transition issues, smoke, availability, environmental footprint, etc
- However, in particular for air launched weapons, $n \& \pi_k$ can be very important as minimum thrust required at lowest operating temperature
 - Lower Isp of double base propellants compensated; see table
 - DB B/S dual burn propellant grains can give increased missile range due to the range of burn rates; especially at high L/D
 - Avoids mass & cost of Pintle, etc
 - Relatively benign efflux, simplified thermal insulation plus reduced pressure/case mass; no HCI (with Minimum Smoke)

	Smokey	Reduced Smoke	M XLDB	inimum Si	moke New Gen
density x Isp KNs/m3	4362	4100	4060	3745	3578
Charge Mass	Ref	3%	4%	8%	0
Max pressure, 71 C		0%	3%	-12%	1%
Velocity Increment		-2%	1%	-2%	-1%

3.1 New energetics: recent developments include

- ADN type propellants
 - Attractive molecule but various issues including
 - HD 1.1, in some or all cases
 - Low melting point
 - High "*n*"
 - Incompatibility
 - Limited apparent progress since FOI's firing of a motor with 3 kg propellant in 2010
- Nitramine/GAP propellants
 - Nammo has qualified motor for Thales' LMM missile (Φ 76 mm); entering service 2020
 - Card Gap high but good IM results
 - Limited range of burn rates & relatively high n, c.f. EM/CDB
 - REACH compliant
- (others: CL-20, Poly GlyN/NiMMO, FOX7 & 12, HNF, LLM-105, etc, etc)

3.2 New energetics: ageing

- Potentially reduced life compared to their conventional equivalents; in any case limited real life storage data (compared to legacy products)
- Due to their energetic nature, often they combine the conventional composite propellant failure modes (oxidative ageing, hydrolysis) with the double base stability issues
- Potential issues due to hygroscopicity of some ingredients
- HTPE motors have not been implemented, except for ESSM, despite the manufacture of "over 1000 HTPE propellant mixes of various sizes"
 - Lifecycle issues associated with aging of the propellants?
 - Further U.S. investment in HTPE has largely been abandoned and other mitigation methods pursued

4. Challenges

- Min Smoke SRM's generally had low IM rating
 - But recent successes: Brimstone motor (EMCDB/SSL) & LMM (GAP/RDX)
- Logistics/manufacture
 - Supply Chain issues: reduced number of suppliers, poor QA, etc.
- Cost & duration
 - Production is required over >20 years with re-starts: obsolesences
 - Surge production can be a solution to both cost & duration
 - TSE & RAM
 - Double base can have similar costs to composite propellants
- Customers & missile primes are sometimes unwilling to consider implementing IM due to risks (perceived or actual) associated with IM products

5. Future Trends & Opportunities

- Future predicted trends with IM relevance
 - GAP/Nitramine propellants increasing in next 15 years
 - But legacy likely to remain important for new production also
 - Increased IM venting for both warheads & motors
 - More composite structures (w/h's & motors)
 - Acceptance of higher energetic raw material costs
 - Increasing IM implementation on legacy systems?
- Variable composition radially via 3D printing
 - Internal diameter for more sensitive
- Source/security of supply
 - <u>flow nitration</u> allowing back-sourcing, new formulations & cost effective production

6. Conclusion

- IM performance, for warheads & SRM's, has improved in last 30 years
 - Legacy systems, generally with limited IM performance, currently dominate inventory
 - As IM is implemented & legacy systems retire from service, the average IM for the inventory will gradually improve
 - Retrofits for IM are unusual despite the technology being available
 - IM investment is estimated to be <1% of tactical missile spend
 - Significant effort on energetic molecules but limited IM benefits to date
 - Legacy energetics, with high performance, can give sub-systems with high IM ratings
 - Less progress on SRM's than w/h's despite motors typically having ~5x NEQ of w/h's
- New manufacturing technologies give opportunities; supply chain issues present a number of challenges

