

Reducing HE Response Severity by Varying the Confinement around an Explosive Charge to Improve IM Signature

Andrew Jones AWE Aldermaston, Reading Berkshire, United Kingdom © British Crown Owned Copyright 2019/AWE

Introduction

- IM Systems: Reduced possibility of unintended Violent Reaction (VR) throughout lifecycle
- Munition will not be in Packaging all of lifecycle (e.g. manufacture, testing/practice firing and disposal)
- During these unpackaged stages, munition is most likely to suffer low speed impact (result of drops or transportation accidents).
- Is it possible to reduce possibility of VR during low speed impacts by altering confinement (such as case thickness) to improve safety signature?
- For most munitions it may not be appropriate to pursue this but for some high cost / consequence munitions it may be desirable

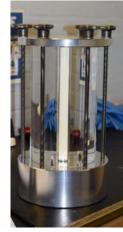
What is being Presented?

- Questions:-
 - Is it possible to reduce possibility of Violent Reaction during low speed impacts by altering confinement ?
 - Can margin between munition and confinement that produces VR be quantified ?
- Use simple Ignition → Burn → VR type concept experiments rather than system geometry (expensive)
 - Alter:-
 - Confinement (thickness and material)
 - Ignition mechanisms (severity of initial reaction)
- Lessons learnt good and bad points

Hypothetical Accident Scenario

- Impact damages Energetic Material (EM)
 - Higher porosity enables burn front to accelerate faster (to a limit)
- Localised ignition in high porosity EM. localised ignition
 - Point heat source (e.g. hot metal fragment @ 700°C relatively gentle ignition)
 - Spigot intrusion with pinch of HE against hard surface (spigot pierces system more severe ignition as temperatures of >> 700°C can be generated)


Concept Test Design


- Based on Deflagration-to-Detonation Transition (DDT) lab tests
- EM details:
 - high (91% by wt.) HMX content. Other 9% wt was plasticiser binder.
 - used in powder form to obtain high porosity (approx. 1 g/cc c.f. 1.9 g/cc for consolidated) representing severe mechanical damage (and for ease of assembly).
 - test sample 25 mm dia., 300 mm long column, sieved to two different particle size ranges (< 1400µm and 1676 to 2500µm) stochastic results did not indicate any significant difference in behaviour
- Ignition thermal and impact (localised in EM)
- Initial tests used high confinement (steel) test vessel but replaced in latter tests by transparent media to enable viewing of burn front progression

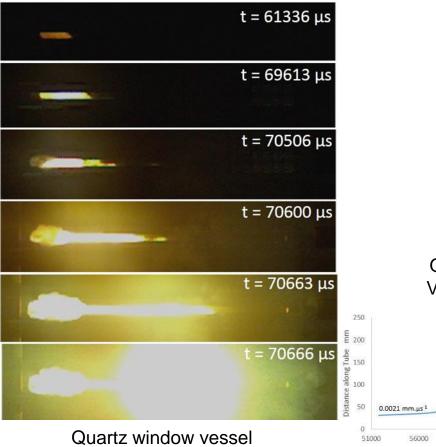
Glow-Plug Ignition Slow build-up in violence/pressure (relatively)

Basic design

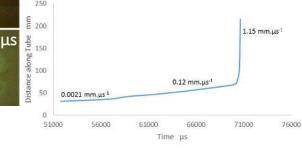
- Three variants in concept vessel (ideally only one):-
 - Steel confinement (5 to 20 mm wall thickness)
 - PMMA confinement (25 & 75 mm wall thickness)
 - Steel with 300 x 14 x 14 mm quartz window rod (quartz weak link)
- PMMA and quartz window used to enable observation of burn in EM

Glow-Plug Ignition Results

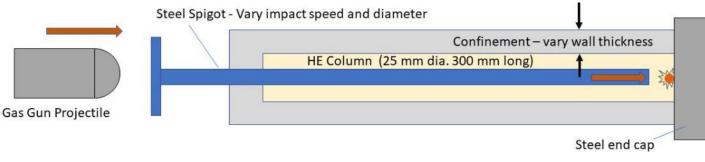
Confinement Material	Wall Thickness mm	Quasi Static Confinement Strength MPa	EM Response
Steel	5 to 20	85 to 180	VR
PMMA	25 and 75	22 and 28	Fail / pressure burst
Steel with quartz window	14 mm quartz	35	VR


- Confinement strength of PMMA and Quartz window test vessels measured using pressure rates of ~ 6 MPa.s⁻¹. Steel test vessels strength calculated using (simple) Barlow's formula.
- Acknowledged that this is slow pressurisation rate compared to EM experiments – more on this later

Examples of Glow-plug ignited Results


PMMA 25 mm wall thickness Reaction self extinguishing

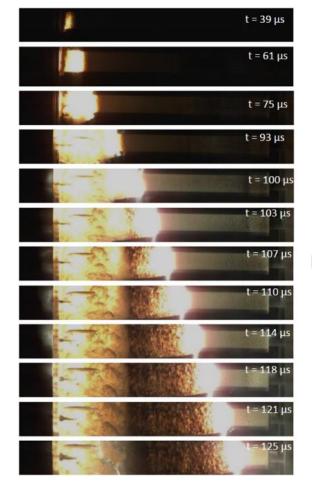
Violent Reaction

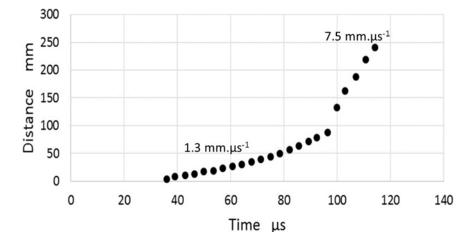

Post test Quartz window Vessel remnant

Spigot Impact Ignition Stronger ignition source – higher temperature

Basic design

- Two variants:-
 - Steel confinement (25 mm wall thickness)
 - PMMA confinement (25 & 75 mm wall thickness)
- Spigot diameter and Impact speed examined


Spigot Impact Ignition Results


Confinement Material	Wall thickness mm	Quasi Static Confinement Strength MPa	Spigot Diameter mm	Spigot Speed at pinch m.s ⁻¹	EM Response
Steel	25	200	6 9 12 15 20	~ 90 ~ 90 ~ 90 ~ 90 ~ 90 ~ 90	Fail Fail VR VR VR
PMMA	25	22	12 15	70 70	Fail /Pressure burst Fail /Pressure burst
PMMA	75	28	2 4 6 11 11	60 60 60 < 55 >55	Fail Fail Pressure burst Fail/Pressure burst VR

Slide 10 of 13 slides

Example of Spigot Impact Ignition Results

PMMA 75 mm wall thickness["] Reaction building to detonation after approx. one-third travel

Steel vessel post-test remnants

Review of Test Results

- Experiments demonstrated that (in certain cases) EM explosiveness can be controlled by altering the confinement
- Test methods need refining e.g.
 - long spigot can flex non symmetric impact producing different ignition patterns.
 - Avoid use of certain materials PMMA and Quartz micro-structural flaws considerably lowers failure strength from theoretical values - tests results suggest by a factor of about 2)
- Pressure testing of vessels is quasi-static different failure strength to dynamic high strain rate. Further complicated if different confinement materials (c.f. munition) used as likely to have different Dynamic Increase Factor (DIF) for failure strength

Summary

- In certain circumstances, reaction growth can be controlled by altering the confinement
- Viable method for controlling response of munitions in accidents? – depends on many factors – probably applicable for limited number of munition systems
- Cost-Benefit ? limited period system is vulnerable
 - use same confinement material in tests as case material around EM in munition to avoid DIF in order to provide (less complicated) quantitative confinement strength comparisons
 - Consider using weak seams or vent ports??