

David Drouet, Didier Picart, Eric Bruneton, P. Bailly

CEA DAM Le Ripault, BP 16 F-37260 MONTS

Heating of HMX-based PBX during low velocity impact

Abstract Number : 22174

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

CONTEXT: Previous Works 1 - Reaction Threshold 76 m.s⁻¹

2 - Microstructure

Up to 80% plastic strain + compaction + few micro cracks + phase transformation + reacted material

[2] Trumel, Lambert, Belmas, 14th Int Detonation Symp, 2010

[4] Picart, Ermisse, Biessy, Bouton, Trumel, Int.J of Energetic Materials and Chemical Propulsion pp487-509

Commissariat à l'énergie atomique et aux énergies alternatives

[2]

For this work, we choose the **Crystal plasticity**.

2 - Problematics

1 - Material

Investigate the role of **crystal plasticity** in the **localization** of **heat production** before **ignition**.

No chemistry No thermal conduction

OUTLINE

- **2- Numerical Setup**
- **3- Results**
- **4- Discussion/Conclusion**

Numerical setup

cea

1 – Geometry

- 68 Voronoi particles
- user subroutine VuMat
- Lagrangian explicit Abaqus solver

200 µm

- 2 Loading
 - Constant volume shear
 - 800 MPa confinement

3 – Other

- Max equivalent von Mises strain of 60%
- Adiabatic
- No Viscosity
- 10 simulations

1 - Elastic anisotropic (GPa)[5]

Pressure	C ₁₁	<i>C</i> ₂₂	C ₃₃	C ₄₄	C 55	C 66	<i>C</i> ₁₂	K _{VRH}
0 MPa	20.37	19.95	17.93	10.66	7.39	11.60	10.64	13.72
800 MPa	33.23	28.38	25.52	13.18	13.64	13.19	14.11	20.75
Pressure	C ₁₃	C ₂₃	<i>C</i> ₁₅	<i>C</i> ₂₅	C ₃₅	C ₄₆	G _{VRH}	E _{VRH}
0 MPa	9.93	13.08	-1.27	5.03	1.53	5.03	6.11	15.87
800 MPa	16.62	20.02	-2.64	6.80	1.70	6.31	8.48	22.27

2 - Crystal plasticity [6]

N°	Miller indices $P2_{1/n}$	Sliding direction $P2_{1/n}$		Plan $\overrightarrow{m^{lpha}}$		Dir	rection $\vec{s}^{\vec{\alpha}}$		Critically Resolved shear stress[6] MPa	
1	$(0\ 0\ \overline{1})$	$\langle 1 \ 0 \ 0 \rangle$	(0,000	0,000	1,000)	<1,000	0,000	0,000>	173.0	— Maximum
2	$(\overline{1} 0 \overline{1})$	$\langle 1 \ 0 \ \overline{1} \rangle$	(0,660	0,000	-0 <i>,</i> 751)	<0,751	0,000	0,660>	38.7	Waximam
3	$(\overline{1} 1 0)$	(0 0 1)	(0,845	0,500	-0,192)	<0,222	0,000	0,975>	72.2	
4	$(0\overline{1}\overline{1})$	$\langle \overline{1} \ 1 \ \overline{1} \rangle$	(0,000	0,545	0,838)	<0,349	0,786	-0,511>	95.9	Minimum
5	$(\overline{1} \ 0 \ \overline{1})$	$\langle 0 \overline{1} 0 \rangle$	(0,660	0,000	-0,751)	<0,000	1,000	0,000>	96.1	
6	$(0\overline{1}\overline{1})$	(100)	(0,000	0,545	0,838)	<1,000	0,000	0,000>	99.2	
7	$(0\overline{1}0)$	(100)	(0,000	1,000	0,000)	<1,000	0,000	0,000>	103.0	

[5] Mathew, Sewell, Propellant, Explosives, Pyrotechnics, 2018.[6] Barton, Winter, Reaugh, Modelling Simulation Mat Sci Eng, 2009.

6

Material behavior

Commissariat à l'énergie atomique et aux énergies alternatives

Results: Mechanical aspects

Macroscopic Mechanical Response

622

[7] Trumel, Lambert, Vivier, Sadou, in Material under extreme loading. Application to penetration and impact, eds Wiley & sons, 2010. [8] Kucheyev, Gash, Lorenz, in *Mater. Res. Express*, 025036

Results: Mechanical heterogeneities

• 15 µm removed

cea

• A section view

 The crystal interactions causes strong heterogeneities
 The critical resolved shear stress is never achieved => no plastic strain

Results: Thermal heterogeneities

1- Thermal heterogeneities

cea

2- Strong and **localized** increase in temperature

Macroscopic Thermal Response

Strong variations with the maximum temperatures

10 Simulations: maximum temperatures

- 1 Crystal plasticity provides a **major contribution** to the heat production
- Warning element quality!
- 2 The localized heating induced by heterogeneities is good candidate for **Hotspot** formation
- 3 Extrapolation : 120% von Mises strain are **currently** needed to reach 734°C

CONCLUSION

- Anisotropic plastic response provides a major heat contribution that can lead to ignition
- Correlation between the macroscopic stress and the experimental data
 - **Crystal plasticity** as the main component of the mechanical dissipation
- Maximum temperature is 'proportional' to the median temperature
- Extrapolation on maximum temperature to reach ignition levels
 - 100% shear strain target to reach 613°C
- >> 80% plastic strain
- 120% shear strain target to reach 734°C

Future works

- Adaptive remeshing (dispersion on the maximal temperatures)
- Hardening in the plastic behavior of HMX
- In-depth statistical study (300 simulations?)
- Evaluation of the simulated volume size for the convergence (200 x 200 x 200 μm)
- Thermal diffusion behavior to be added
 - Pressure dependent β - δ phase transformation to be added

13

CO2 THANK YOU FOR YOUR ATTENTION

May I answer your questions?

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

References

[1] Henson B., Smilowitz L., Asay B., Dickson P., J. Chem. Phys. 117, pp. 3780, 2002

[2] Trumel H., Lambert P., Belmas R., in proc. 14th int. Detonation Symp. Coeur d'Alene, USA, 2010

[3] Vial J., Picart D., Bailly P., Delvare F., Modelling Simul. Mater. Sci. Eng., 21, pp. 16, 2013

[4] Picart, Ermisse, Biessy, Bouton, Trumel, Int.J of Energetic Materials and Chemical Propulsion pp487-509

[5] Mathew N., Sewell T., Propellant, Explosives, Pyrotechnics, 43, pp.223-227, 2018.

[6] Barton N., Winter N., Reaugh J., Modelling And Simulation In Materials Sicence And Engineering, 17, pp. 19, 2009.

[7] Trumel H., Lambert P., Vivier G., Sadou Y., in Material under extreme loading. Application to penetration and impact, eds Wiley & sons, pp. 179-204, 2010.

[8] Kucheyev S. O., Gash A. E., Lorenz T., in Mater. Res. Express, 1, 025036

DE LA RECHERCHE À L'INDUSTRIE

Appendix

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr