

RESONANT ACOUSTIC® MIXING: Qualification Challenges

Insensitive Munitions & Energetic Materials Symposium Seville, Spain, 22-24 October 2019

Christelle COLLET

Propulsion Technology TSO c.collet@msiac.nato.int

Matthew ANDREWS

Energetic Materials TSO m.andrews@msiac.nato.int

Aurihona WOLFF

MSIAC Intern a.wolff@msiac.nato.int

Chris HOLLANDS

DOSG, UK MoD

- Introduction
- MSIAC Technical Meetings
- Processing
 - Conventional
 - o Mix In Case
- Quality & Assurance
- Qualification

Conclusions

Introduction

- New technologies provide access to new materials
 - E.g. for improved performance
 - Must not be done at the expense of safety
- Information required for safety assessment
 - MSIAC Limited Report: L-245
- Change in manufacturing
 - Reduced time
 - Reduced steps
- How to ensure quality through life

- Research led
- Testing feasibility of apparatus
- Full scale available

Why are we discussing this?

Supporting Munitions Safety

Nelson, 2018

Resonant Acoustic Mixing

- o Batch
- In-Case Mixing
- o Continuous
- AOP-7 focus on suitability of energetic material for intended role
 - No information on the process
- AOP-7
 - Change in process, manufacture or location constitutes a new materials

MSIAC Technical Meetings

Supporting Munitions Safety

Participants

RAM users & National Authorities

Topics for discussion

- RAM manufacturing
- Requirements for quality assurance
- Suitability of current energetic material tests in qualification
- Baseline materials for comparison
- Suitability of S3 testing for RAM produced munitions
- Cross-over to other technique

2018 IM & EM TECHNOLOGY SYMPOSIUM

INNOVATIVE INSENSITIVE MUNITION SOLUTIONS FOR ENHANCED WARFIGHTER EFFECTIVENESS

Major Questions

Supporting Munitions Safety

Processing

- General
 - O How to determine end of mix?
- Mix In Case
 - O What is considered a batch size?
 - What will be considered lot acceptance?
- Continuous Mixing
 - O What is a batch?
 - O How and when to sample?
 - Acceptance criteria
- Scaling
 - Material quality
 - Safety

Qualification

- Material Specifications
 - Are they suitable and sufficient for RAM applications?
- Lot and batch sizes
 - Should there be a change in definition for in-case and continuous mixing?
- Current Qualification standards
 - Are they suitable and sufficient for RAM?

Experimentation - Energetics Being Processed

- Co-crystalisation
- Rocket motor propellants
- Plastic explosives
- High solids loaded PBX
 - Cast cured
 - Moulding powders
- **Thermites**
- Flare compositions
- Gun propellant still requiring safety assessments
 - **Energetic liquids**

am Ende, 2015

Nelson, 2018

Provatas, 2017

Miklaszewski, 2018

Provatas, 2017

Conventional Process

Supporting Munitions Safety

- How to provide assurance
 - **Material**
 - Process
- Sampling throughout process
 - Extraction of material ingredients, formulation
 - Breakdown of munition in-service surveillance

Specifications

Composition

Analysis

- Physical properties
 - Composition
 - Bulk density
 - Granulation
 - Chemical properties
 - Moisture
 - Residual acid
 - Mechanical properties
 - Integrity
 - X-ray

Mix In Case Process

Nelson, 2018

- How to provide assurance
 - Material +
 - Process
- Sampling of material
 - Single batch
- Breakdown of munition
 - Single batch

Quality

- Control required over all areas
- Technology
 - Stability
- Raw Materials
 - Tight specifications
 - Ingredients
 - Formulation
- Batch Size 1
 - o Industry 4.0
- Process Control
 - o E.g. Dulux
 - End to end digitalisation of the plant
 - Electronic Batch Record
 - Paperless production
 - Every step tracked & recorded
 - Remove sources of error

https://new.siemens.com/global/en/company/stories/industry/any-color-desired.html

https://www.efficientplantmag.com/2012/09/adding-value-to-society/

Specification

- Tightening material specification
 - o Ingredients
 - Formulation
- Process specification
- Robustness of the process to deviation
- Accuracy
 - The closeness of agreement between a test result and the accepted reference value
- Precision
 - The closeness of agreement between independent test results obtained under stipulated conditions

Ref: ISA 2010

Fundamental & Applied Research

INTERPRET RESULTS

Supporting Munitions Safety

SIMULATION
Computational
Model

SUGGEST EXPERIMENTS
DATA ACQUISITION

VALIDATE MODELS PROVIDE DATA

SUGGEST SUGGEST EXPERIMENTS
THEORY
Conceptual Models

RESULTS

MSIAC Unclassified/Unlimited Distribution

THEORIES

Experimentation – Different Approaches

Supporting Munitions Safety

Two categories of tests:

- 1) Tests on the how the apparatus mixes
- Macro & micromixing
 - Beam line experiments [Jubb, 2018]
 - RAM provides a more homogeneous mix [Beckel, 2018] [Nelson, 2018]
 - Apparatus to monitor mixing progress [Jubb, 2018]
- Scale up
- Vessel and mixing parameters
- These tests are needed to
 - Build models,
 - Test theory and
 - Run simulations

2) Tests on the produced materials

- Similar density can be found [Zebregs, 2018] and less voids are observed with the RAM,
- Similar safety properties are observed in terms of impact, friction and ESD [Beckel, 2016]
- Similar performance can be seen with RAM [Jubb, 2018]
- Similar sensitivity of the final product [Komansechek, 2018]

Qualification

Supporting Munitions Safety

- Existing material RA mixed
 - Meets material and performance specifications
 - Passes AOP-7 tests
 - Compared against conventional mixed
- **Process**
 - Batch or Mix In Case?
- National Authority
 - Decision on qualification

"If it looks like a duck and walks like a duck, perhaps it is a duck"

- Existing material RA mixed
 - Exceeds performance specification
 - Passes AOP-7 tests
 - Compared against conventional mixed
- Process
- **National Authority**

Qualification

Supporting Munitions Safety

- Ensure that knowledge exists in both industry and government
 - Intelligent customers
- RAM processed materials
 - Awareness of co-crystal formation
 - Shortened mixing time
 - Chemical reactions still need to take place
 - Understand impact on mechanical properties
 - Alter formulations to achieve required properties

Testing of Energetic Materials

- No initial change expected for current materials
- Possibly for very viscous materials
- Overall qualification
 - Potential to reduce time
- Concerns
 - Rate of change of RAM affecting qualification
 - RAM standard steady state of technology maturity

Conclusion

Current testing for energetic materials is considered suitable

- No change for batch processing
- In case mixing still requires consideration for through-life support
- Batch Size 1 is possible if the whole process is controlled and documented

- Knowledge of the process needed in both government and industry
- Greater understanding of the whole process is required to provide assurance

References

- am Ende, D., Anderson, S., & Salan, J. (2014). Development and Scale-Up of Cocrystals Using Resonant Acoustic Mixing. *Organic Process Research & Development, 18*(2), 331-341. doi:10.1021/op4003399
- Beckel, E., Lee, K., Marin, J., & Shah, A. (2016). Processing of Explosives at ARDEC Using the LabRAM. 2016 Technical Interchange Resonant Acoustic Mixing.
- Beckel, E. (2018). Environmentally Friendly Energetic Processing Via Resonant Acoustic(R) Mixing. SERDP & ESTCP Webinar Series. Deacon, P. (2016). Nitrocellulose Processing in a Flammable Solvent: Designing a Safer Process. 7th Nitrocellulose Symposium. Montréal, Canada.
- Davey, R., Wilgeroth, J., & Burn, A. (2018). New Age of PBX Manufacturing: Optimisation of RAM. 49th International Annual Conference of ICT, (p. 5). Karlsruhe, Germany.
- Guymon, C. (2018). In-Process Classification of Explosives. Improved Explosives & Munitions Risk Management (IEMRM). Granada, Spain: MSIAC
- Jubb, D. (2018). The Falcon Project: MSIAC: Impact of Resonant Acoustic Mixing (RAM) on Munitions Safety and Suitability for Service. 1st RAM Technical Meeting. Portland, USA.
- Komanschek, V. (2018). Comparison of Gap Test Results of PBX KS 33: RAM vs. Planetary Mixer. 2nd RAM MSIAC Technical Meeting. Shrivenham.
- McPherson, M. (2014). Resonant Mix Process Development for Castable Propellants and Related Energetics. RAM Energetics Conference and Workshop. Butte, MT.
- Miklaszewski, E. (2018). Resonant Acoustic Mixing of Pyrotechnics at NSWC Crane. SERDP.ESTCP Symposium.
- Nellums, R., Terry, B., Tappan, B., Son, S., & Groven, L. (2013). Effect of Solids Loading on Resonant Mixed Al-Bi2O3 Nanothermite Powders. *Propellants, Explosives, Pyrotechnics*, 38, 605-610.
- Nelson, A., Miller, M. (2018). Resonant Acoustic Mixing of High-Energy Composite Materials. SERDP.ESTCP Symposium
- Pavey, I.D. (2015). Hazard Assessment of High Speed Slurry Blending Using Computer Modelling of Electric Fields and Potentials. Journal of Physics: Conference Series, 646, 012023
- Provatas, A., & Wall, C. (2017). Development, Characterisation & Ageing of an Alternative Plastic Explosive. 48th International Annual Conference of ICT, (p. 11).
 Karlsruhe, Germany.
- Thomas, G.W., Prickett, S.E., Richman, S.A., Radack, C.M., Cassell, E., Michienzi, M., Murphy, C.M., Newton, W. (2006). Environmental Security Technology Certification Program 2.75-Inch Motor Manufacturing Waste Minimization Project. *ESTCP WP-9804*
- Zebreg, M. (2018). RAM work at TNO. 2nd MSIAC Technical Meeting: Impact of Resonant Acoustic Mixing (RAM) on Munition Safety and Suitability for Service. Shrivenham. UK.
- A. Wolff. (2019). L-xxy: Resonant Acoustic Mixing Performance and Optimization for Energetic Materials. Limited Report, L-xxy (in publication). MSIAC, Brussels, Belgium, 2019.

Sampling

Supporting Munitions Safety

https://research-methodology.net/sampling-in-primary-data-collection/