

Slow Heating Test Thermal Equilibrium and Maximum Reaction Temperature

IMEMTS 2019

Dr. Ernie Baker
TSO Warheads Technology
e.baker@msiac.nato.int

Dr. David Hubble
Naval Surface Warfare Center Dahlgren Division
US Navy

- Background
- STANAG 4224, Edition 4
- Analytic Thermal Soak Calculations
- Finite Difference Thermal Soak Calculations
- AOP-4382 Heat Soak Update
- Maximum Reaction Temperature Review
- Summary

- Supporting Munitions Safety
- MSIAC was asked to examine STANAG 4224 ED. 4 and determine if the preconditioning table and formulas are appropriate for a preconditioning requirement in AOP-4382 (Slow Heating Test).
 - MSIAC (E. Baker) did analytic thermal calculations and NSWCDD (D. Hubble) did 1-D thermal finite difference calculations for 50°C soaks in order to investigate the applicability.
 - A new preconditioning heat soak formulation developed as a result of these studies.
- MSIAC was subsequently requested to review maximum reaction temperatures.
 - Information valuable for SH oven designs.
- AOP-4382 has been updated and is currently being ratified.

STANAG-4224, Edition 4

Supporting Munitions Safety

Large Calibre Artillery And Naval Gun Ammunition Greater Than 40 Mm, Safety And Suitability For Service Evaluation (superseded)

• When conditioning ammunition, durations below shall be used as a minimum:

- For ammunition of calibres not specified in table:
 - a. For calibre ≤ 105mm.

$$D = 0.1016 + 0.0516 + 0.009946 + 0.009946$$

b. For calibre > 105mm.

$$D = 16.8414 - 0.0013*S + .0002292*S^2$$

D = Duration of Conditioning (hr), S = Ammunition Calibre (mm)

Analytic Thermal Soak Calculations

One-term approximation solutions for the time required for a cylinder to reach 48°C and 45°C using a 50°C heat soak. The computational procedure consists of solving for the Fourier number, τ from the following equation.

$$\frac{T_0 - T_\infty}{T_i - T_\infty} = A_1 e^{-\lambda_1^2 \tau}$$

The time can then be calculated from the Fourier number.

$$t = \frac{\tau r_0^2}{\alpha}, \qquad \alpha = \frac{k}{\rho c_p}$$

The values for A_1 and λ_1 depend on the Biot number, $Bi = \frac{hr_0}{k}$. h is the heat transfer coefficient. k is the thermal conductivity. c_p is the specific heat and ρ is the density.

Bounding Calculations

- In all cases the Biot numbers were large (much greater than 0.1) and the Fourier numbers were large (much greater than 0.2). Therefore the one term solutions should be accurate within 2%.
- Completed bounding calculations of maximum time and minimum time based on a range of expected explosive and propellant properties.
- Subsequently completed the same calculations based on a more nominal maximum and minimum range.

Value	Extreme	Nominal		
	range	range		
ρ (g/cc)	1.5 - 2.2	1.7 – 1.8		
k (W/m⋅ºC)	0.1 - 0.5	0.2 - 0.3		
Cp (J/kg⋅ºC)	500 – 1500	1200 – 1300		
h (W/m²)	55 – 120	75 - 100		

Bounding Soak Calculations

Supporting Munitions Safety

Calculated time for a cylinder center to reach 45°C compared to the tabular and formula based guidance in STANAG 4224.

Bounding Soak Calculations

Supporting Munitions Safety

Calculated time for a cylinder center to reach 45°C compared to the tabular and formula based guidance in STANAG 4224.

Comp B Calculations

- Completed calculations for a cylinder of Comp B to reach 45°C using a 50°C heat soak in order to make comparisons with a specific material
- The heat transfer coefficient is oven and item dependent.
- Dr. David Hubble provided heat transfer coefficients that he had obtained based on experiments that he had conducted using steel cylinders in the NSWCDD standard oven design.
- These heat transfer coefficients are somewhat lower than the values previously used in the calculations.

Value	Composition B
ρ (g/cc)	1.7
k (W/m-⁰C)	0.226
Cp (J/kg-ºC)	1130
h (W/m²-ºC)	11 – 25

Comp B Analytic Thermal Calculations

Supporting Munitions Safety

Calculated time for a Composition B cylinder center to reach 45°C compared to the tabular and formula based guidance in STANAG 4224.

Comp B Analytic Thermal Calculations

Supporting Munitions Safety

Calculated time for a Composition B cylinder center to reach 45°C compared to the tabular and formula based guidance in STANAG 4224.

Finite Difference Thermal Modeling

- Analyzed a variety of munitions using a 1-D code
- Model used to calculate fill temperature vs time
- Temperature is asymptotic with time
 - How close to equilibrium is close enough?
 - Tightening equilibrium requirements increases soak time
 - Example: 1,000 lb bomb starting at 20°C
 - Center of fill reaches 40°C in 19hrs (ΔT=10°C) but takes twice as long (38hrs) to reach 48°C (ΔT=2°C)

Finite Difference Thermal Modeling

AOP-4382 Heat Soak Update

Max Reaction Temperature Review

- A review of maximum SH reaction temperature was conducted using the MSIAC Advanced IM Search (AIMS) database.
- 29 reaction temperatures found
- Highest found reaction temperature: 260°C
- Majority of munitions react below 200°C

		Main	Ext.		Heating	Reaction
Munition	Item	Energetic	Dim.	Config.	Rate	Temp.
		Material	(mm)		(°C/hr)	(°C)
PAC-3 Missile - Analog Rocket Motor	Rocket Motor	HTPB/AI Propellant	280	Pack.	27.8	260
2.75 " Rocket - Mk146 Mod 0 Warhead	Warhead	PBXN-110	70	Pack.	22.2	223
105 mm PGU 44/B HE Shell	Warhead	PBXN-109	105	Pack.		218
105 mm M915 DPICM Shell	Warhead	PAX-2A	105	Pack.	27.8	215
Apache Missile	Rocket Motor	HTPB/AI Propellant		Bare	3.3	196
5" HE Shell	Warhead	ARX-4024	127	Bare	3.3	195
ASRAAM Missile	Warhead	PBXP-31		Bare	3.3	195
MU90 Torpedo	Warhead	V-350	324	Bare	3.3	195
105 mm M915 DPICM Shell	Warhead	Comp A-5	105	Pack.	27.8	194

Summary

- Aim to develop a standard assessment protocols for:
 - Acceptability of explosive for gun launch
 - Acceptable defect types, sizes, distributions
 - Acceptable defect identification methods
- Review and generation of gun launch data
 - Acceleration and spin
 - Acceleration perturbations
 - Fill stress histories
 - Incidents
- Review of explosive mechanical response modeling under gun launch and in setback actuators
 - Current state of the art
 - Energetic mechanical response material models
 - Defects modeling
- Standards development: best practices document (STANREC)
 - Setback actuators
 - Statistical analysis and quantitative risk protocols
 - Defect identification methods
 - Explosive acceptability process
 - Acceptable defect types, sizes and distributions process