

Non-HERO Microwave Hazards to Munitions

IMEMTS 2019, Seville, Spain

Matt Ferran TSO Munition Systems <u>m.ferran@msiac.nato.int</u> Christelle Collet TSO Propulsion Technology c.collet@msiac.nato.int

- The Military Electromagnetic Environment
- HERO
- EM Radiation Interaction with Matter
- Dielectric Properties of Energetic Materials
- Implications for Munition Systems
- Conclusions

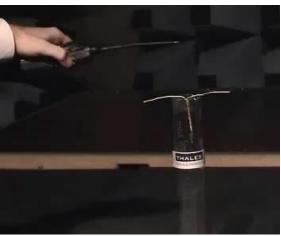
Military RF Environment

Military RF Environment

- Actual RF EME encountered by munitions dependent on e.g.:
 - o Operational environment
 - o Platforms
 - o Transmitter proximity
 - o Etc.
- AECTP-250 "NATO Worst Case EME"

					-	
	Frequency	Ra	ange (MHz)	Average (V/m)	Peak (V/m)	
	0.01	-	2	200	200	
	2	-	30	200	200	
	30	-	150	200	200	
	150	-	225	200	200	
	225	-	400	200	1,500	
	400	-	700	270	1,860	
	700	-	790	240	1,500	
	790	-	1000	480	2,530	
-	1000	-	2000	00	<u>Z_000</u>	-
Ĺ	2000	-	2700	490	6,000	
	2700	-	3600	2,620*	21,050*	
	3600	-	4000	490	8,550	
	4000	-	5400	400	7,200	
	5400	-	5900	400	7,200	
	5900	-	6000	400	7,200	
	6000	-	7900	400	2,500	
	7900	-	8000	400	2,500	
	8000	-	8400	750	5,000	
	8400	-	8500	400	5,000	
	8500	-	11000	1,940	10,000	
	11000	-	14000	680	3,630	
	14000	-	18000	680	6,000	
	18000	-	40000	420	3,640	
	40000	-	45000	580	580	

Table-258-5: Worst-Case Operational EME Field Strength Levels


2.45GHz

• HERO

- EED firing lines act as an aerial
- Sufficient energy to fire most EED can be picked up at substantially lower RF field strengths than experienced in service
- Well understood
- Exposure of energetic materials to RF radiation?

- How does RF radiation interact with matter?
 - o Dielectric Heating of non-metals
 - Not just water that is heated
- What about metals?
 - \circ Penetration depth measured in μm
 - Reflect majority of incident microwaves
 - o Cannot be heated significantly
 - Powdered metals absorb microwaves strongly – microwave sintering

- What factors influence RF heating?
 - Dielectric loss factor (ɛ")
 - o Temperature and frequency dependent
- Power absorbed / unit volume:

$$P = 2 \cdot \pi \cdot f \cdot \varepsilon_{eff}^{"} \cdot \varepsilon_0 \cdot E_{rms}^2$$

• Rate of temperature increase:

$$\frac{\Delta T}{\Delta t} = \frac{2 \cdot \pi \cdot f \cdot \varepsilon_{eff}^{"} \cdot \varepsilon_0 \cdot E_{rms}^2}{\rho \cdot c_p}$$

Material	ε" (@ 2.45GHz, ~20°C)	
Water (0.5M NaCl)	67.0	
Graphite	~12.5	
Water (Distilled)	12.0	
Ethyl Alcohol	6.5	
Soda Lime Glass	1.2	
PVC	0.016	
Teflon	0.001	

1. Gupta, M. and Leong, W.W., Microwaves and Metals (2007)

2. Hotta, M. et al., ISIJ International, Vol. 51 (2011), No. 11, pp. 1766-1772

- Some reported values of ε" for energetic materials
- General observations:
 - ε" low for molecular explosives and formulations thereof
 - Very slight increase in PBXs perhaps due to binder?
 - JA2 should absorb microwaves strongly may be due to addition of graphite
- Comprehensive body of knowledge does not exist

Material	ε" (@ 2.5GHz, ~20°C)	
Comp. B	0.01	
TNT	0.01	
PETN	0.02	
RDX	0.02	
HMX	0.02	
PBX-9404	0.03	
Composite Propellant	0.27	
JA2 Propellant	0.75	

- 1. Duque, A.L.H et al., *Propellants, Explosives, Pyrotechnics*, Vol. 39, pp. 275-283, 2014
- 2. Barkley, S.J. et al., 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016
- 3. Howard, S.L. et al., JANNAF Propulsion Meeting, 1995

Microwave Heating of Energetic Materials

- Examples of heating to initiation in ~mins
- Examples of deliberate heating of EM
- No examples of EM exposure to AECTP-250 environment
- Estimate the microwave heating rate for in-service energetic materials using:
 - o Equation for rate of temperature increase
 - Values for dielectric and physical properties taken from the literature
 - Average field strength values derived from AECTP-250

1. Hayes, R.W. and Crist, B.F., *Proceedings of the 19th JANNAF Safety and Environmental Protection Subcommittee Meeting*, 2002

Explosive	۳3	E / V.m⁻¹	ρ / kg.m ⁻³	C _P / J.kg ⁻¹ .K ⁻¹	Time to heat by 100K
Comp. B	0.01	490	1730	1065	153 hr
TNT	0.01	490	1590	1125	149 hr
PETN	0.02	490	1780	1090	80 hr
PBX-9404	0.03	490	1844	1130	58 hr
JA2	0.75	490	1500	1260	2 hr
JA2 @ 3GHz	0.5	2620	1500	1260	5.5 min

- Period of high intensity RF exposure generally insufficient for heating
 - Very short period of exposure; or
 - Administrative controls prevent exposure; or
 - Field strengths low by design or circumstance
- Many munitions made from metal or have metal components
 - Warhead / rocket motor casings, logistic containers etc.
 - Microwave penetration depth in order of μm
 - Not perfect shielding RF radiation can penetrate seams, ports, vents, nozzles etc.

Composite Materials

- Increasingly used in munition systems, particularly rocket motor cases
- What are the dielectric properties?

Material	ε" (@ 10 GHz)	Penetration Depth / mm
Kevlar Composite	0.45	23.0
Glass Composite	0.70	15.3
Carbon Composite	13.10	1.5

1. Zoughi, R. and Zonnefeld, B., *Review of Progress in Quantitative Nondestructive Evaluation*, 10B, pp. 1431-1436, 1991

• Assumptions regarding munition casing microwave protection may not be valid...

Known Incident

Known Incident

Supporting Munitions Safety

Conclusions

- Microwave heating of EM in munition systems is a credible hazard
 - Associated risk dependent on: EM ϵ ", munition system design, service EME
- Only a small amount of research on EM dielectric properties
 - Excludes formulations (for the most part), and temperature dependence
 - Molecular explosives appear to have low susceptibility higher for composites, compositions containing carbon
- Munition system design may provide some protection
 - Composite materials allow microwave penetration and are susceptible to microwave heating

Conclusions (2)

- Under worst case conditions, EM can be heated to initiation in minutes
 - o At least one recorded incident
- Assessment of munition susceptibility to microwave heating should be made prior to introduction into service. Scope of assessment proportional to likely risk:
 - Metal cased munitions containing molecular explosives subject to benign EME basic assessment
 - Munitions without metal cases, containing microwave susceptible compositions, or subject to more severe EME – more extensive assessment