

Solving a tricky heavy fragment effect : approach and corrective solutions

IMEMTS, October 21-24 2019

E. BACLE (EURENCO)

J. MORICEAU(Ariane Group)

1. BACKGROUND

- **2. NUMERICAL MODELLING**
- **3. DESIGN UPGRADE**
- **4.** CONCLUSION

CONTEXT

- Program development for DGA : bomb type MK82 (class 500 Lbs) design
- Specific insensitivity requirements :
 - No Sympathetic Detonation (SD)
 - No Detonation after Heavy Fragment Impact (HFI)
- → Main charge of insensitive explosive B2268A (NTO based)
- Embedded Booster B2197A (HMX based)

Heavy Fragment Impact requirement : Impact test on Main charge

→ TYPE V reaction (Burn)

Heavy Fragment Impact requirement : Impact test in booster area

→ TYPE I reaction (Detonation)

■ Test result not in accordance with tests on similar designs → Numerical modeling

1. BACKGROUND

2. NUMERICAL MODELLING

3. DESIGN UPGRADE

4. CONCLUSION

FE Modeling

Geometry simplified with representatives thickness

FE Modeling

Simulation run under 3D lagrangian assumptions : the model is a 360° cylinder with a spherical steel « heavy fragment ».

	Material	Behaviorlaw	Equation of state
Casing	Steel 4340 model	Johnson-Cook	Mie-Gruneisen
Thermal insulator	Rubber PBHT model		
Main charge	B2268A	Elastic-plastic	
Booster	B2197A (ORA86B)	hardening	
Anti-friction	Rubber type PBHT model	naruening	
Gap between fuze wall of the well and anti-friction sheet	Void		
Fuze well	Steel 4340 model	Johnson-Cook	Mie-Gruneisen
Inside of the well	Void		

Behavior laws : elastic-plastic with equation of state

FE Mesh 2mm×2mm×2mm

FE Modeling

Behavior laws and material parameters Steel 4340 :

> Johnsonn-Cook behavior law and parameters Mie-Gruneisen equation of state

թ (kg/m³)	C0 (m/s)	S1	A (MPa)
7810	4578	1,33	792

Ruber - Santoprene : PBHT assimilated

Elastic-plastic bahavior and Mie-Gruneisen equation of state FE erosive algorithm activated beyond $\varepsilon = 500$ %

ր (kg/m³)	C0 (m/s)	S1	G (Mpa)	σ_y
920	1885	2,144	10	1

B2268A-B2197A(ORA86B)

Elastic-plastic bahavior and Mie-Gruneisen equation of state FE erosive algorithm activated beyond ε = 300 %

	թ (kg/m³)	C0 (m/s)	S1	G (Mpa)	σ_y
B2268	1766	2042	2,336	10	1
B2197	1700	2211	2,715	10	1

$$\sigma_{y} = (A + B\varepsilon^{p^{n}})(1 + Cln\dot{\varepsilon}^{*})(1 - T^{*^{m}})$$

$$p = \frac{\rho_0 C^2 \mu \left[1 + \left(1 - \frac{\Gamma}{2} \right) \mu \right]}{\left[1 - (S_1 - 1) \mu \right]^2} + \Gamma e$$

Impact simulation

Pressure field

Pressure field

Pressure

Monitored under the casing and at the B2268A/B2197A interface Compared to the « Gap Test » detonation pressure criterion:

o B2268A

- ≻ Gap Test Ø40 : 50 cards ⇔ 125kb
- ightarrow Gap Test Ø75 : 45mm ⇔ 70kb

• B2197A

- ➢ Gap Test Ø40 : 160 cards ⇔ 45kb
- ≻Gap Test Ø75 : 90mm ⇔ 27kb

Locations of pressure probes

Energy flow rate

Monitored under the casing and at the B2268A/B2197A interface Compared to the « Calibrated Shock Wave Test » and the « Wedge Test » energy criteria:

A strong energy flow rate towards the B2197A when the fuze well is collapsing around 215µs, but a significant margin compared to the required amplitude for a Shock to Detonation Transition

Modeling validation : B2197A response under heavy fragment loading on the 3 liters mock-up

The model predicts the impact velocity leading to B2197A detonation observed on 3 liters mock-up heavy fragment impact tests, around 1900 m/s

- Intermediate conclusion :
 - Shock levels below the SDT criteria of the two PBXs
 - Detonation likely due to the second shock on the opposite fuze well wall on a damaged B2197A explosive

1. BACKGROUND

- **2. NUMERICAL MODELLING**
- **3. DESIGN UPGRADE**

4. CONCLUSION

DESIGN UPGRADE

Design upgrade objective :

Avoid the heavy fragment second sock on the fuze well opposite wall

Design upgrade mean:

Steel hollow stiffener

Design upgrade mean:

- Steel hollow stiffener
- □ Full plastic plug

fuze well with steel stiffener

VS

plastic plug

Design upgrade test validation :

Steel stiffener + plastic plug

Design upgrade test validation :

CONCLUSION

Numerical modeling has permitted to :

- Understand the 1rst test result and identify the root causes
- Validate the Shock to Detonation Transition (SDT) criteria
- Assess the reliability of different solutions for final choice and experimental validation

CONCLUSION : expected EG VR IM signature

Threat	Result
Fast Cook-Off	V
Slow Cook-Off	IV / V
Bullet Impact	V
Sympathetic Detonation	Ш
Light Fragment Impact	V
Heavy Fragment Impact	V
Shaped Charge	V

ACKOWLEDGEMENTS

Works performed under DGA Contract

Simulations run by Ariane Group

IM tests performed by Bofors Test Center

BOFORS TEST CENTER

A MEMBER OF

