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OVERVIEW

• Characterizing HE impact sensitivity

• Large Scale Gap Test (LSGT)

• NATO IM Fragment Impact (FI) testing

• Baseline Anti Armor warhead FI response

• Fragment Impact mitigation

• FEM Technology 

• High rate continuum modeling methodology and predictions

• Experimental results

• Summary and conclusions
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CHARACTERIZING HE IMPACT SENSITIVITY

• Explosive shock sensitivity is generally characterized using 

large scale gap tests (LSGT)

• Small Scale Fragment Attack (SSFA) testing has recently 

been explored to address potential deficiencies in LSGT test 

• Recent study presented engineering correlations of LSGT, 

Held’s criteria, critical diameter and percent Theoretical 

Mazimum Density (%TMD)

• Fragment Impact (FI) testing characterizes the explosive 

response within a munition configuration

– Reaction types range from Type I (detonation) to Type V (burn) and 

Type VI (no reaction)

– LSGT and FI tests have unique phenomenon, as a result reduced 

card gap values may not translate into improved FI response

– Additionally there are challenges with FI test repeatability 
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LARGE SCALE GAP TEST (LSGT)
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NATO IM FRAGMENT IMPACT (FI) TESTING

• NATO standard FI test (STANAG 4496) [1]

– 14.3mm diameter, 18.6g, L/D~1, 160°
conical nosed fragment

– Mild steel, Brinell hardness <270

– 2530±90 m/s impact velocity

– Aimpoints: center of largest presented 
area of HE or most shock sensitive 
location

• Smooth bore 40mm powder gun often used 
in the U.S. [2]

– Commercially available, used by various 
test facilities

– Powder charge adjusted to obtain 
correct velocity

– Replaceable wear section

– Plastic sabot machined to fit

• Variability issues [2]



6

UNCLASSIFIED

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

•Anti-Armor Warheads with shaped charge (SC) or explosively formed 

penetrator (EPF), commonly use high energy, metal pushing energetic 

formulations (such as PBXN-9 and LX-14), react violently to FI (2530±90 

m/s)

BASELINE AAW FI RESPONSE

Logistical 

FI Test

Warhead A 

FI Test 

(Series 1)
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FRAGMENT IMPACT MITIGATION

• Fragment Impact Mitigation Technologies:

– Utilize legacy formulations with improved sensitivity characteristics:

❖PBXN-9 and LX-14 with FEM HMX 

❖FEM HMX LSGT is 30 cards less than std LX-14

– PIMS technology:

❖Remove initial impact shock

❖Provide sufficient fragment velocity reduction, breakup and 

dispersion resulting in a weaker threat
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Traditional mechanical size 

reduction technology

– Particles mechanically milled

– Rough, irregular shapes of crystals

Simple technical innovation

– Compressed air employed to move explosive 

in mill chamber

– Particle-to-particle impact

No moving parts with energetic processing

– No sensitized handling of explosives

– Removal of “pinch points,” extended friction

– No collection of hazardous explosive dust

FEM TECHNOLOGY
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Program incorporated one FEMHMX batch material for 

experimentation

HMX Class 1 milled to FEM requirements

– Feed Rate: 5lbs/hr

– Feed Air: 80 psi

– Grind Air 100 psi

FEMHMX

– D0.5 = 6.6 micron

FEMHMX INPUT MATERIAL
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80% FEM LX-14 Selected for better consolidation and 

diminishing returns on card gap value

FEM LX-14

Density

% FEM Cards g/cc

LX-14

Std LX-14 198 1.80
80% FEM 166.5 1.81

100% FEM 161.5 1.80

Cards

PBXN-9

Control 186.5
45% FEM 184.5
75% FEM 186.5

100% FEM 156.0
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Standard PBXN-9 and LX-14 with 80% FEM HMX have 

similar card gap value

LSGT RESULTS

HE FI Series HE Pressed Density Card Gap 

  [g/cc]  

Standard PBXN-9 1 1.73 175 

Standard PBXN-9 2 1.73 169 

Standard PBXN-9 3 1.73 179 

Standard LX-14 -- -- 236 

LX-14 with 80% FEM HMX 4 1.81 166.5 

LX-14 with 80% FEM HMX -- 1.80 177 
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PBXN-9 varied response in series 1 and 3 of similar configuration (Warhead A)

Standard LX-14 is notably more sensitive than PBXN-9 with a recorded card gap of 236

Utilizing 80% FEM HMX drops this value by 27%, with a mean of 171.5 cards

This is comparable to mean LSGT values for PBXN-9 of 174.3 cards

FI TEST RESULTS

Series Test Condition Explosive Reaction Type

Baseline Warhead A - Logistical PBXN-9 I

1 Warhead A PBXN-9 (I)

1 Warhead B PBXN-9 (III)

1 Warhead B PBXN-9 (III)

2 Surrogate Warhead A – steel 1 PBXN-9 (IV)

2 Surrogate Warhead A – steel 1 PBXN-9 (V)

2 Surrogate Warhead A – steel 1 PBXN-9 (V)

2 Surrogate Warhead A – steel 2 PBXN-9 (IV)

2 Surrogate Warhead A – steel 2 PBXN-9 (IV)

2 Surrogate Warhead A – steel 2 PBXN-9 (V)

3 Warhead A - No Liner PBXN-9 (IV)

3 Warhead A - No Liner PBXN-9 (IV)

3 Warhead A - Liner 1 PBXN-9 (IV)

3 Warhead A - Liner 1 PBXN-9 (V)

3 Warhead A - Liner 1 PBXN-9 (IV)

3 Warhead A - Liner 2 PBXN-9 (V)

3 Warhead A - Liner 2 PBXN-9 (IV)

4 Surrogate Warhead A – steel 1 80% FEM LX-14 (I)
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SSFA RESULTS

Material Cover plate thickness [in.]

1/8 1/4 5/16 3/8 1/2

PBXN-9  - Lot A I IV -- V --

PBXN-9  - Lot B I IV -- VI --

LX-14 -- III III III III

LX-14 (80% FEM) -- III -- IV IV

80% FEM LX-14

Standard LX-14 

¼” cover plate 5/16” cover plate 3/8” cover plate

Standard PBXN-9

¼” cover plate 3/8” cover plate

¼” cover plate

3/8” cover plate
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FI RESULTS

• Series 1 and baseline FI responses significantly more violent (Type I) when

compared to those of similar configuration series 3 tests (Warhead A)

➢ Potential lot-to-lot variability in the PBXN-9 material, which results in the

varied response to impact stimulus. Lot-to-lot variability in impact response

has been observed in prior tests using LX-14 [9, 10]

➢ Uncertainty may be due to the difficulty of fragment flight control [6]

• Warhead A configuration appears to be more sensitive as compared to warhead

B in FI

• Similar configuration FI test results of FEM LX-14 detonate, while those of

PBXN-9 respond benignly, suggesting that FEM LX-14 should have a higher

card gap value. However, PBXN-9 and 80% FEM LX-14 have similar card gap

values

➢ The mechanism is unclear, but contributing factors could include shear

concentration in the considerably stiffer FEM LX-14 binder, which would be

exacerbated by shock-front curvature in an FI test.
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SSFA RESULTS

• SSFA results align more closely with FI data, and suggest greater impact 

sensitivity of 80% FEM LX-14 over PBXN-9

➢ Differences in response likely due to binder material stiffness, total 

nitramine loading content, and crystal shear. FEM LX-14 contains 

smaller crystals that reduce average void size and response under 

adiabatic compression in the short duration, planar LSGT 

environment

➢ Crystal size and binder stiffness can contrarily also explain the 

increased sensitivity under FI test, with shear concentration leading 

to initiation rather than void collapse.

• All standard LX-14 reactions were assessed as Type III, although 

increasing violence observed with increasing cover plate thickness
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SSFA RESULTS
(Cont’d)

• Trends observed in the gap test experiments diverge from those 

observed in the impact tests. 

➢ Phenomenological models, such as the Hugh James criteria, predict 

initiation based on a set of threshold metrics [11, 12]. 

➢ The James criteria is a hyperbolic relationship between a critical 

energy fluence and a critical specific energy term. 

➢ Gap tests approach the asymptote of the Energy Fluence with high 

amplitude, short duration shock events. 

➢ Impact tests approach the Specific Energy asymptote, with lot 

amplitude, long duration events that impart more particle velocity to 

the HE.
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CONCLUSION

• Both LSGT and SSFA tests are useful screening tests for the prediction 

of full scale, system level FI reaction violence.  

• LSGT provides large body of historical data for comparison, is 

inexpensive and can be conducted at a number of facilities. Most 

applicable to prompt shock to detonation transition (SDT). Limited 

modeling capability

• Munitions FI response dependent upon additional factors, not captured 

by LSGT, such as fragment tile, yaw, miss distance, curvature, shear 

initiation and damage. 

• Although SSFA lacks historical body of data, it provides an unquantified 

indication of shock, damage, and penetration phenomena as well as a 

gross, relatively inexpensive, qualitative assessment of a munition’s 

response. 
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CONCLUSION
(Cont’d)

SSFA methodology is somewhat different from FI and care must be taken 

in interpreting the results. SSFA requires further study to gauge robustness 

for additional explosive systems 

• Additional testing with reproducible results (LSGT, SSFA, and FI) would 

provide statistically relevant data set with which to measure HE 

sensitivity. 

• LSGT, SSFA and FI results serve as a body of evidence for explosive 

sensitivity

• The divergence of LSGT and FI experimental techniques is not 

altogether unexpected, as phenomenological models such as the Hugh 

James criteria treat initiability as a hyperbolic function of both short 

pulse, high amplitude (explosive, e.g., LSGT) events and longer acting, 

lower amplitude (impact, e.g., FI) events.
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