

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMAMENTS CENTER

Test Development for Characterizing Electrically Controlled Energetic Materials

Kimberly Chung

U.S. Army CCDC - Armaments Center

Insensitive Munitions & Energetic Materials Technology Symposium

DISTRIBUTION A. Approved for public release: distribution unlimited.

BACKGROUND

Electrically Controlled Energetic Materials (ECEMs)

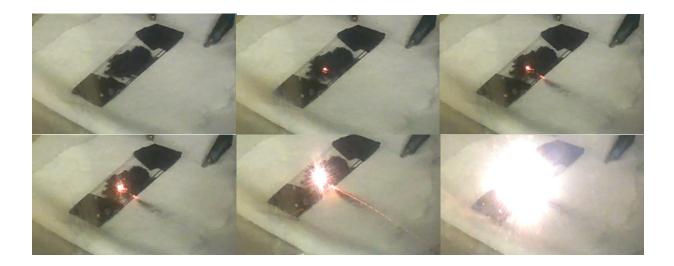
- Materials that are electrically responsive to electrical stimulus
- Produce gas and flame when ignited (for gun propulsion systems)
- Objective: Develop a material where the output is controlled by the incoming electricity
 - Ignition in the presence of electricity
 - Tune burn rate after ignition
 - Quench reactions
- Benefits: Temperature compensation, in-flight course correction, simplification of ignition train
- Applications: Igniters, rocket motors, thrusters, etc.

• Formulation

- Modification of existing propellant
- Manipulation of nitrocellulose
- Novel ingredients
- Electrode Configuration/Power Delivery
 - Voltage and current settings
 - Electrode configuration
- Performance Tests
 - Determine ways to meaningfully evaluate ECEMs
 - Ignitable Does the material respond to electricity?
 - Quantitative How does the material burn?

Proof-of-Concept Test

- Evaluate ignitability with the smallest amount of material
- Electricity is applied to determine if the material is responsive (burns and outgases) to electrical stimulation
- Configurations:
 - Glass slides with stainless steel electrodes
 - Two metal slides with Teflon spacers



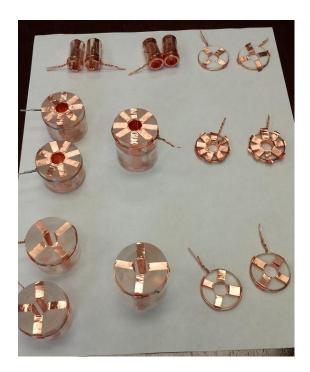
Proof-of-Concept Test – Glass Slides

- Glass slides allow for visual observation of any reaction
 - Easy to procure and cost effective
- Power delivered to samples affected by the thickness of the stainless steel wires
- Ignition was typically observed at one of the electrodes

Proof-of-Concept Test – Metal Slides

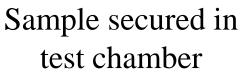
- Increase area of contact between samples and electrodes
- Evaluated copper and aluminum slides
- Ignition is only visible from the gap between the copper slides
- Spacers are needed to
 - Ensure the slides do not come into contact
 - Provide a well to cast the material into

Spacers are used to prevent short circuits


Ignition event with copper slides

Cylinder Test

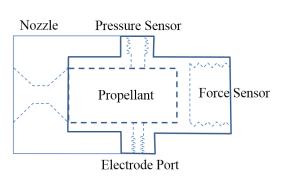
- Larger sample quantities: up to 5g of material
- Acrylic withstood the flame and temperature generation
 - Copper tape serves as the outer electrode(s)
 - The second electrode is a copper wire in the center of the fixture

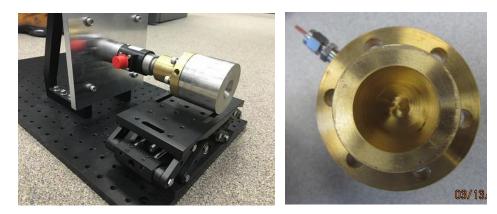


Cylinder Test

- Testing is conducted in an enclosed chamber which can be vented
- Cylinders are supported in a clamp or left free standing on a metal block
- Fixtures are not reusable

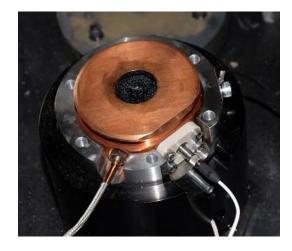
Sample is entirely consumed





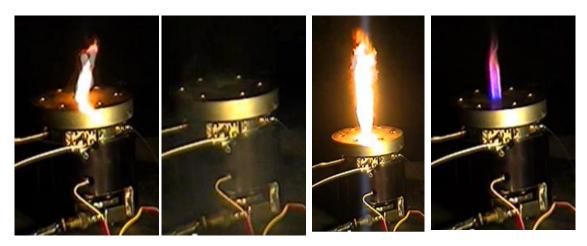
Subscale Thrust Fixture – First Iteration

- Fixture designed to collect pressure and force/thrust data
 - Generate data for predicting performance of scaled up rocket motors
- Copper test chamber (2.5mm x 5mm) serves as one electrode while a wire threaded in through a port will be the second electrode
- Stainless steel nozzle constricts the opening of the test chamber
- Threads used to interface various components presents hazards



Subscale Thrust Fixture – Updated Design

- Fixture designed to collect temperature, pressure and, thrust data
- Up to 50g of material can be loaded
- Test chamber contains seven electrodes to increase likelihood of ignition
- Can be modified to accommodate different electrode modules
- Easily interfaces with existing power supply
- No threads to minimize pinch points

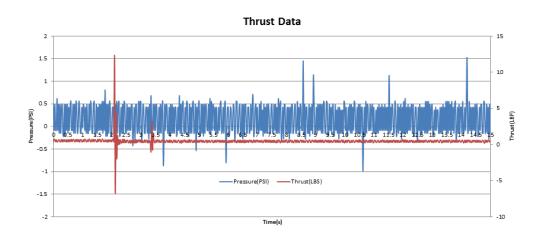


TEST DEVELOPMENT

Subscale Thrust Fixture – Current Design

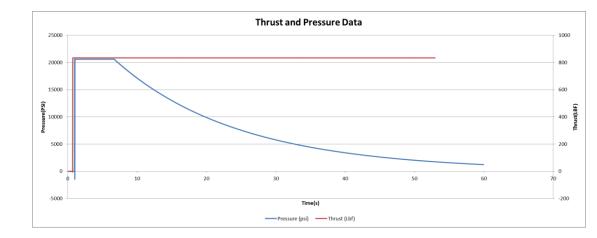
- Initial tests focused on achieving ignition
 - The maximum voltage was applied to the samples (223V)
- Standard and high speed video captured the event
- Flames were produced intermittently until all material was consumed
 - Voids in the sample chamber likely led to the inconsistent reaction

Images from standard video



Subscale Thrust Fixture – Burn Event

- The thrust data captured the irregularity of the reaction
 - Two distinct peaks for the thrust data are observed
 - The pressure gauge did not record significant data
- Temperature could not be captured due to the brevity of the reaction and the thermal mass of the test chamber



Subscale Thrust Fixture – Deflagration Event

- Initiation occurred immediately after application of power
- The nozzle plates was destroyed
 - Recovered in multiple pieces
 - Bolts were sheared off
- Gauges were maxed out immediately after reaction

- Three tests were developed to screen and evaluate ECEMs
 - Proof-of-concept: qualitative information, small quantities
 - Cylinder test: qualitative information, small quantities
 - Subscale thrust fixture: quantitative information, medium quantities
- Data acquisition system has been verified
 - Pressure port must be relocated to capture gases produced
 - The temperature gauge is not useful due to the size of the test chamber
 - Removed in next iteration and can be considered if the test chamber has less mass.
- Quenching of ECEMs
 - Reaction is more difficult to quench in larger quantities

- Testing
 - Redesign thrust fixture to avoid overpressurization
 - Reconfigure location of gauges
 - Update power supply
 - Capture voltage and amperage during the reaction
 - Determine ignition delay
 - Evaluate HERO safety
- Improve sample quality
 - Investigate vacuum casting techniques and formulations employed to improve voids
- Modeling
 - Feed data from subscale test fixture to model what is going on

