

SMALL SCALE EVALUATION OF ENERGETIC MATERIALS: SHOCK SENSITIVITY CHARACTERISATION AT THE EARLY STAGE OF SYNTHESIS

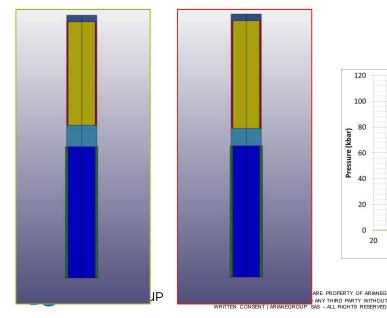
Julien MORICEAU, Audrey HOLSTEIN

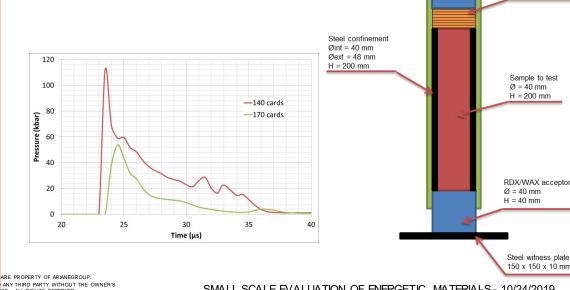
IMEMTS 2019, Séville (Spain), 24/10/2019

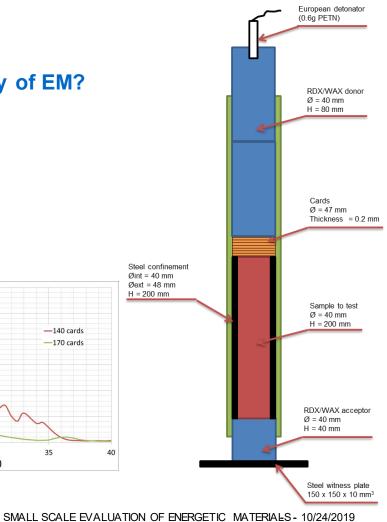
1. Context of this study

2. Small GAP test setup

3. Database construction




Question : How determine the relative sensitivity of EM?


Shock to Detonation Transition

Critical pressure vs. time

Answer : Gap test

Δ

Properties of new molecules since the early stages of synthesis is usually difficult to determine:

Some performances (detonation velocity...) can be worked out with thermochemical codes (e.g. Cheetah 2.0)

Some characteristics, like sensitivity, are characterized after many years of studies

Scale	Quantity	Delay	Product	Granular product characterization	Formulations characterization
1	500 mg - 1 g	то	Granular product	safety (ISI, ISF, ESD), chemical structure, thermal analysis	None
2	10 - 20 g	2 years	20 g of granular product	Compatibilities, formation enthalpy, density, micro calorimetry	density, safety, micro calorimetry
3	100 g - 2 kg	4 years	Formulations with 100 g of product	Gap test and mini gap test, detonation velocity, critical diameter…	Gap test and mini gap test, detonation velocity, critical diameter…

The constraints are the following ones:

Only few grams of new charges are available

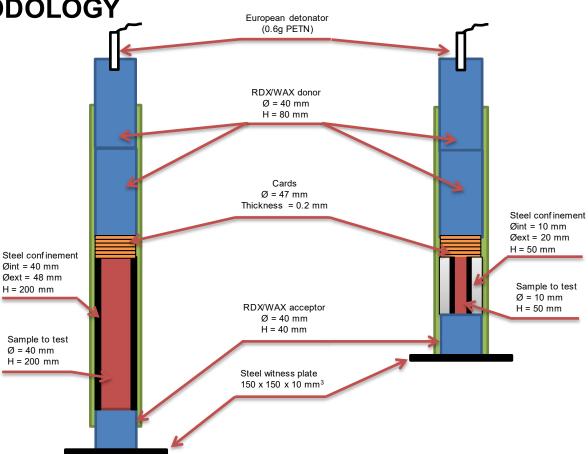
Test configuration has to be representative of a future application

Results obtainable with our methodology have to be comparable with known results

Answer:

A reduced gap test

A reference matrix to reduce the quantity of product

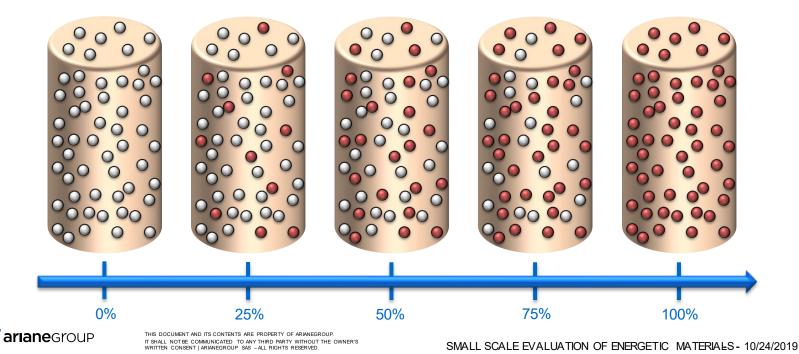

Test setup

RDX/Wax donor and acceptor are the same than Card Gap Test (Ø40 mm) in order to obtain a correlation

Use of sample confinement to access composition detonability even with a failure diameter > 10 mm (e.g. : PBXN109, Øc = 14 mm)

Ø10 mm H50 mm samples, between 6 and 7 g of product (70 g for the full test)

- Use of an energetic matrix to reduce the needed quantity od product
- Formulation with matrix is representative of future applications



Inert binder / RDX reference composition research

Based on inert binder/RDX explosive

• Replacement of a part of RDX by new charge we want to characterize

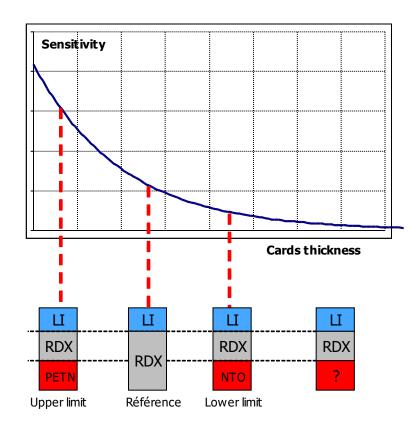
Inert binder / RDX reference composition research

Based on inert binder/RDX explosive

- Variation of RDX filling rate, RDX particle size, RDX quality
 - Reference composition : HTPB/RDX 0-200 B 30/70 (180 cards)
 - high rate of RDX + large particle size of fillers to avoid charge settling in the binder
 - Can detonate in 10 mm diameter steel tube

	Weight composition (%)							
Ref.	Neutral binder	HTPB binder	RDX M3C CH	RDX M3C B	RDX 0-200 B	RDX 0-100 B	RDX 75-300 CH	Cards number
1	30	-	70	-	-	-	-	140
2	45	-	55	-	-	-	-	135
3	60	-	40	-	-	-	-	130
4	30	-	-	-	70	-	-	175
5	45	-	-	-	55	-	-	150
6	60	-	-	-	40	-	-	155
7	30	-	-	70	-	-	-	155
8	30	-	-	-	-	70	-	165
9	30	-	-	-	-	-	70	185
10	-	30	70	-	-	-	-	140
11	-	45	55	-	-	-	-	130
12	-	60	40	-	-	-	-	125
13	-	30	-	-	70	-	-	180
14	-	30	-	-	-	-	70	170

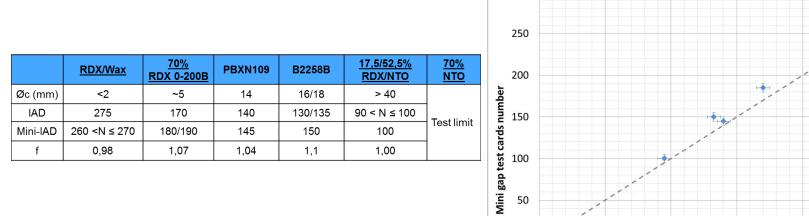
- Testing of different binder : well known HTBP, other neutral binder to face up with some compatibilities
 - Evaluation of paraffin wax in comparison of HTPB as binder
 - Specific attention about sample homogeneity
 - Similar results with correct reproductibility


Binder	RDX 0-200 B	Cards (mini GT Ø10H50)
PBHT		175
PBHT	70%w.	190
paraffin wax Tf=65°C		175
paraffin wax Tf=65°C		>180

Scope of explored sensitivity level

Based on inert binder/RDX explosive

- Reference composition : HTPB/RDX 0-200 B 30/70 (180 cards)
- Replacement of a part of RDX by NTO (lower limit):
 - 3 RDX/NTO compositions (75/25, 50/50, 25/75)
 - Detonability & Sensitivity → 130 cards (59 kbar)
- Replacement of a part of RDX by PETN (upper limit):
 - 2 RDX/PETN compositions (50/50, 25/75)
 - Detonability & Sensitivity →235 cards (22 kbar)



Test representativeness

Gap test comparison on different materials

- Function of failure diameter
- Transposition factor between Gap Test and mini-gap test [130; 220 cards]

300

0

0

50

100

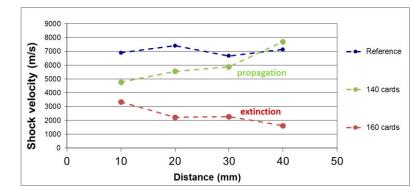
Number of cards similar for both test

200

250

300

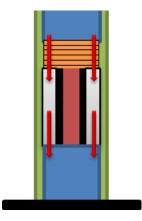
150


Gap test cards number

Test limitation

Special focus on very insensitive compositions

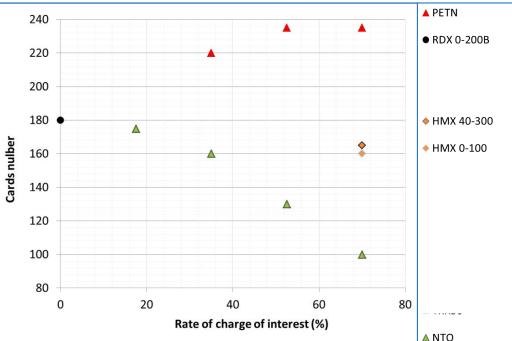
- Reference composition : HTPB/RDX 0-200 B 30/70 (180 cards)
 - Under 100 card, a shock wave transmitted through steel confinement causes the detonation of the RDX/Wax acceptor.
 - In order to detect these "false positive", we have improve the test setup with contact pin among the confinement



We can extend test domain to less sensitive charge

THIS DOCUMENT AND ITS CONTENTS ARE PROPERTY OF ARIANEGROUP. IT SHALL NOTBE COMMUNICATED TO ANY THIRD PARTY WITHOUT THE OWNER'S WRITTEN CONSENT | ARIANEGROUP SAS - ALL RIGHTS RESERVED.

Reference compositions characterization


Sensitivity scale border

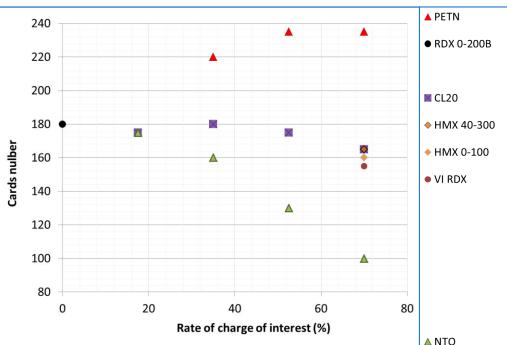
- Replacement of RDX by PETN increases the sensibility
- Replacement of RDX by NTO decreases the sensibility
- Compositions with HMX seem to have a light reduced

sensibility in comparison with compositions based on RDX

Weight composition (%)						
RDX		НМХ		Mini CT (carde)		
0-200 B	40-300 0-100 M3C		M3C	Mini-GT (cards)		
70				180		
	70			165		
		70		160		
	35		35	155		

 \rightarrow in agreement with the state-of-the art

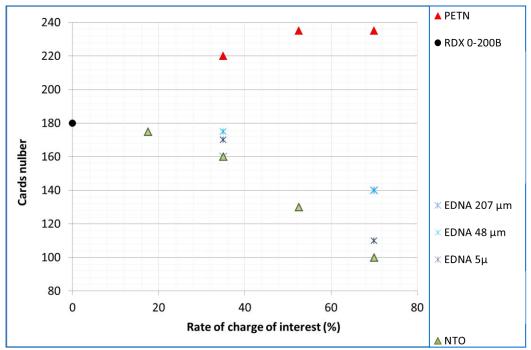
Reference compositions characterization


Introduction of well-known molecules

- Very Insensitive RDX
 - Less sensitive than RDX or HMX 0 same size

70% weight composition					
RDX	Mini-gap test	нмх			
0-200 B	175-190				
75-300 CH	170-185				
0-100 B	165	40-300			
	160	0-100			
VI	150 <n≤160< td=""><td></td></n≤160<>				
M3C B	155				
M3C CH	140				

- CL20
 - Less sensitive than RDX in composition @ ≠ size



On-going molecules characterization

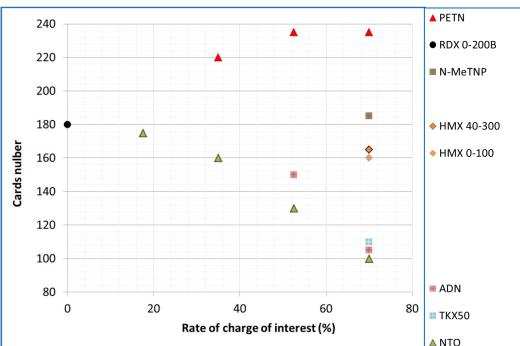
EDNA-based compositions characterization

- Less sensitive than RDX
- No effect of the grain size between coarse and middlesized particle
- Fine particles have a decreasing effect on the shock sensitivity of the composition

Weight composition (%)						
Binder		EDNA	RDX	Card		
Binder	Coarse	Middle-sized particle	Fine	0-200B	numbers	
	-	-	-	70	180	
	35			35	160	
Paraffin	70			-	140	
	-	35		35	175	
wax	_	70		-	140	
		-	35	35	170	
		_	70	_	110	

On-going molecules characterization

Testing of partners molecule


ADN form EURENCO Bofors

Weight composition (%)						
Binder ADN RDX Cards						
		70	180			
PBHT	35	35	150			
	70		105			

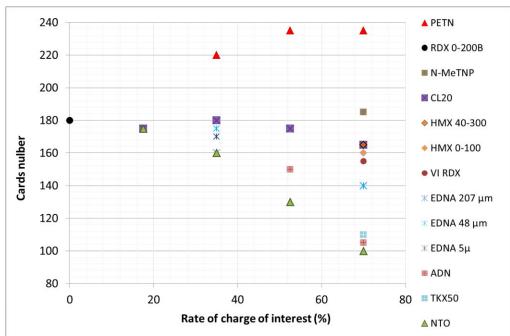
- TKX50, form EURENCO
 - Less sensitive than NTO ?
- **N-Me TNP**, trinitropyrazole in paraffin binder, from

Arianegroup

04 CONCLUSIONS

CONCLUSION/PERSPECTIVES

Small scale evaluation methodology


A new method has been developed to test new molecule sensitivity in composition :

- Using a Small Scale Card Gap test (mini Gap test)
- Able to class molecules in a range from PETN to NTO
- Using 50 g of new molecule
- Comparable with usual Gap Test results
- Test domain extended to low sensitive charge

New molecules test still in progress

Database useful to study the impact of ingredient (molecule, particle size, filling rate..) on sensitivity

THANKS TO CONTRIBUTORS

