

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMAMENTS CENTER

Energetics and Munitions Suitability for Gun Launch

Sean Swaszek (US Army)

Mechanical Engineer

FCDD-ACM-EW

Distribution A: Approved for public release; distribution is unlimited

BACKGROUND

- Gun launched munitions undergo extreme loading conditions during ballistic cycle
- Sufficient heating due to defects can lead to the unintended ignition and cause a premature reaction of the item
- There is a knowledge gap in understanding the environment and the cause of a reaction occurring
- Existing test methodology does not address influence and safety criteria from defects found in energetic materials.

BACKGROUND

- A working group has been setup under NATO AC326 SG/A
- Consists of engineers & scientists from different laboratories and nations
- Goals
 - Identify topic areas that are related to issue
 - Review available relevant information
 - Determine level of understanding
 - Begin developing future standard

CURRENT RELEVANT STANDARDS

AOP-7 Data Requirements and Tests for the Qualification of Explosive Materials

- Guidance on requirements for type of energetic material
- Provides test methods to assess sensitivity, thermal, physical, performance, aging

AOP-4170 Principles and Methodology for the Qualification of Explosive Materials for Military Use

- Establish explosive qualification requirements
- Ensure materials are characterized sufficiently

STANAG 4224 Large Caliber Artillery and Naval Gun Ammunition Greater Than 40mm, Safety Suitability for Service Evaluation

- Defines test series such as propulsion charge, strength of design, environmental conditioning, worn barrel, projectile safety,
- "there shall be no significant voids, cracks, HE dust, bonding failures or other unacceptable features in the condition of the projectile, and where appropriate, sub munition filling"
- "where there is evidence of these features, the significance of these shall be explained by the developing nation"

CAUSES LEADING TO IGNITION

- Unintended ignition such as an inbore is related to damage to defects during the launch
- Mechanisms attributed to heating are believed to be
 - Adiabatic compression of gas
 - Shear flow
 - Frictional heating
 - Pore Jetting
- Numerous past work efforts have studied the effects
- However their role and contribution are not well defined

DEFECTS IN MUNITIONS

Formation of defects occur in energetics due to

- Type of formulation (Cast Cure, Pressed, Melt Pour)
- Manufacturing loading process
- Aging of the material during storage

Common Types of Defects

- Cracks
- Voids
- Porosity
- Piping
- Base Gaps
- Exudation
- Migration

INSPECTION OF DEFECTS

X-ray (non-destructive)

- Influence from multiple defects, requires multiple orientations
- Does not detect exposed crystals, migration, or exudation

Sectioning Loaded Projectiles

- Cutting operation may cause further damage to defects
- Apparent size may reduce with shavings

Are we measuring the correct parameters?

- Surface area
- Volume

Sectioned projectile showing defects

X-rays showing defects such as gas porosity (left) and cracks(right) in projectiles

DYNAMIC LAUNCH ENVIRONMENT

Internal ballistics calculations for the launch environment

Pb = pressure in breech

Ps = pressure at projectile base

Phe = theoretical HE base pressure

c = propulsion charge weight

w = projectile mass

a = acceleration (G's)

 ρ = density of fill

h = column height of HE fill

Eq. 1
$$Ps = (1 + \frac{c}{w})Pb$$

Eq. 2
$$a = \frac{Ps*Area}{w}$$

Eq. 3
$$Phe = \rho * a * h$$

Loading profile on a 155mm projectile during launch

EXPLOSIVE LOADING ON WARHEAD

- Testing on instrumented 155mm projectiles with comp B
- Higher quality explosive fill demonstrated lower pressures at base vs with defects
- Possible factors that may influence loading
 - Presence of defects
 - Explosive material behavior
 - Support from warhead geometry
 - Bonding/adhesion HE to warhead

FIG. 1 ASSEMBLED PROJECTILE

DIAPHRAGM

Instrumented 155mm projectile measuring pressure at HE base

SUBSCALE TESTING

- Test capabilities exist among different laboratories for subscale testing on explosives
- Loading is applied to deform or collapse defects in samples
- **Device pistons driven by**
 - Compressed Gas
 - Drop Weight
 - Propellant Combustion

BAE-GCS Gun Launch Simulator

TESTING DEVICES

 In cases the devices can match the expected loading environment well

Actuator Control Function

- Peak pressure
- Loading rate
- Duration

Known Adverse Issues

- Ignition due to device interfaces such as pinch points
- Interpretation of response and reaction violence
- Comparison with known legacy materials or munitions

P-t plot for a 127mm projectile

Loading in NSWC IH Setback Device

MODELLING AND SIMULATION

- Use of M&S can supplement analysis
- Development of ignition and growth models
 - IM event model
 - Accident response
- Scenarios
 - SDT shock to detonation
 - DFT deflagration to detonation
 - Shear damage/burning
- Variety of models exists, HERMES (High Explosive Response to MEchanical Stimulus)

Mesh of a 155mm projectile with nodes removed to simulated a large defect in HE

IGNITION SIMULATION

- Attempt to simulate defects causing ignition at CCD-AC
- HERMES (High Explosive Response to MEchanical Stimulus)
 - Developed at LLNL (Lawrence Livermore National Labs)
 - Based off prior SDT, mechanical damage, and reaction growth to detonation models
- Reaction onset is determined by an ignition criteria
- Model defines how explosive will behave as a structural model
 - Example simulation of defect defines a ignition parameter level of ~15
 - HERMES model was applied to the Stevens test and a an ignition parameter of ~200 is required for

Simulation using the HERMES model to assess ignition during loading event

SUMMARY

- Identify & provide background on subject areas related to explosive during launch
- Inspect & measure defects in explosives
- Characterize loading environment expected during launch
- Perform subscale testing on explosive formulation
- Use M&S capabilities to support information on defect failure
- Incorporate statistical analysis to define or measure likelihood of initiation
- Agreement on methodology for steps that may be used to assess safety and suitability during dynamic loading

END

Questions?

STATISTICAL ANALYSIS

- Need for extrapolating limited data for new explosive fills to be used in munitions
- Example depiction of assumed response in subscale or full tests
 - 30 test shots total
 - 5 repeats over 6 defect sizes
- Use of data to determine probability for analysis
- Concerns method of analysis can skew results, larger range in confidence intervals