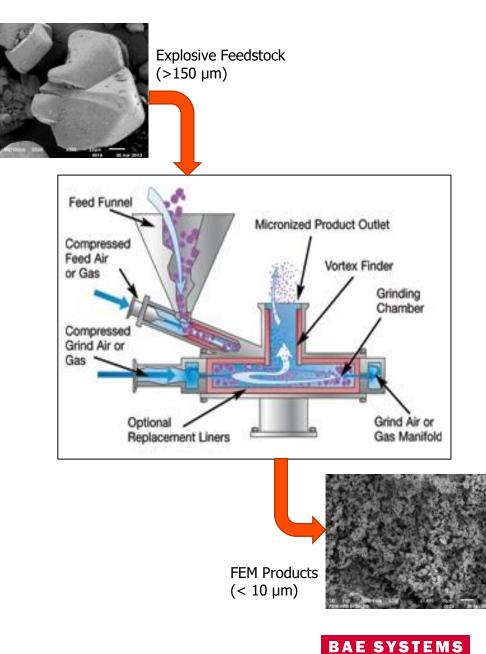
MANUFACTURING & CHARACTERIZATION OF INSENSITIVE HIGH-ENERGY EXPLOSIVE CONTAINING FLUID ENERGY MILLED NITRAMINE (ABSTRACT #22238) IMEMTS 2019 (Session 2B Energetic Materials)

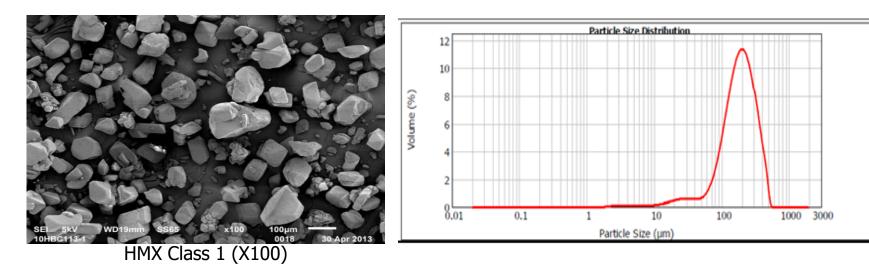
Authors: Virgil Fung *, Brian Alexander, Myles Donegan, Neil Tucker BAE Systems, Holston Army Ammunition Plant, Kingsport, Tennessee, United States October 22, 2019

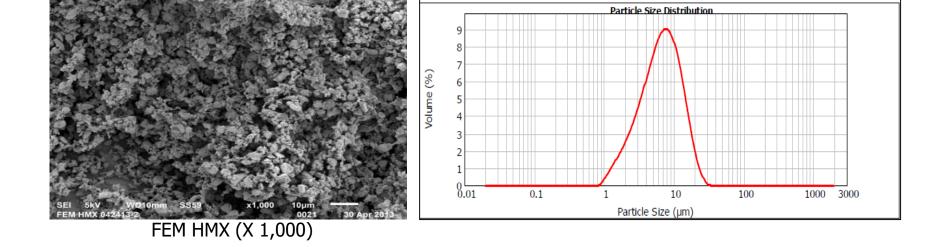
BAE SYSTEMS


2019 Insensitive Munitions & Energetic Materials Technology Symposium ${\scriptstyle \textcircled{O}}$ BAE Systems

Briefing Outline

- Program Overview
- Review of Test Result to Date
- New Formulation Effort
- Conclusion
- Acknowledgements


Fluid Energy Mill Technology


- Traditional mechanical particle size reduction technology
 - Particles mechanically milled
 - Rough, irregular shapes of product crystals
- Innovation of the technology resides in its simplicity:
 - Compress air employed to move explosive particles in mill chamber
 - Particle-to-particle impacts reduce size of explosive
 - Capable of reaching $\sim 1 \ \mu m$
- Advantages of FEM Technology
 - No moving parts with regards to Energetic Processing
 - No "in-process" sensitization of explosives
 - No "pinch points" risk reduction
 - FEM explosive product exhibited improved sensitivity
 - Crystal defects (cracks/voids) eliminated by milling
 - Reduced particle size a key factor

Particle Size Reduction through FEM

- HMX Class 1 Precursor
 - d₅₀ ~ 200 µm

2019 Insensitive Munitions & Energetic Materials Technology Symposium ${\scriptstyle \textcircled{O}}$ BAE Systems

Fluid Energy Milled HMX

• d₅₀ ~ 5 μm

•

Fluid Energy Mills at BAE Systems HSAAP

R&D Pilot Scale

- 4" Diameter Fluid Energy Mill
- Use for product and process development
- Successfully demonstrated milling of coated RDX precursor, retaining the plasticizer post milling (ACE FEM Program, IMEMTS 2015)

Production Scale

- 15" and 24" Diameter Fluid Energy Mill
- Production "Work-Horse" to produce Fluid Energy Milled RDX, HMX and NTO

FEM Products	Main Use
FEM RDX	CXM-AF-5, CXM-AF-7; IMX-104
FEM HMX	CXM-AF-8, Various New Formulations featured in this briefing
FEM NTO	IMX-101, IMX-104

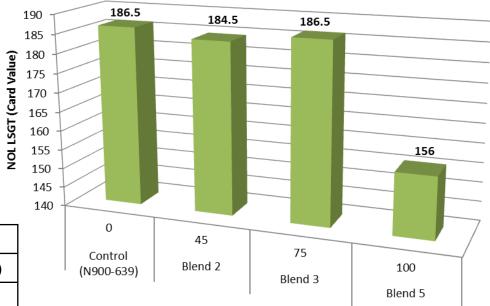
• Future plan to install additional Fluid Energy Mills due to high demands

FEM Formulation Methodology

- Why?
 - FEM explosives demonstrated improved IM properties when used in formulations
 - Crystal internal defects eliminated with milling
 - No more rough edges
 - No deterioration in explosive performances
 - FEM HMX = Regular HMX
 - Overcome one of the most important deficiencies in terms of IM Technology Insertion

• How?

- In high performance HMX & RDX based explosive products, substitute legacy nitramines with FEM equivalent nitramines
 - LX-14 (HMX / Estane Binder)
 - PBXN-9 (HMX / Hytemp / Diocytl Adipate)
 - Composition A-5 (RDX / Stearic Acid)
- Conducted lab scale experiment initially, followed by pilot scale production
- Goals
 - Reduce sensitivity of the high energy explosives without compromises in explosive performances

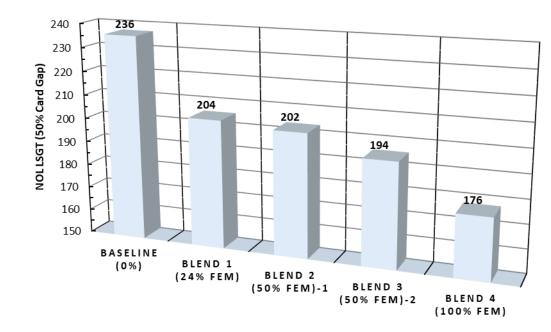

PBXN-9 with FEM HMX – Laboratory Trial Highlights

Experiment Summary

- Standard PBXN-9 Slurry Coating Processing
- Adjusted HMX to FEM HMX Ratio
- Selected candidates tested for Shock Sensitivity (NOL LSGT)
- Blend 5 (100% FEM HMX substitution) showed the most significant improvement in shock sensitivity
 - Baseline: 186.5 cards (24.7 kbar)
 - Blend 5: 156.0 cards (36.3 kbar)

Sample	FEM/Legacy	% HMX	% Binder	NOL Large Scale Gap Test				
ID	HMX Ratio	(91-93% w/w)	(7-9% w/w)	50% Card Gap	Pressure (kbar)			
Baseline	0/100	91.90	6.30	186.5	24.7			
Blend 2	45/55	91.82	6.24	184.5	25.3			
Blend 3	75/25	91.91	6.08	186.5	24.7			
Blend 5	100/0	91.89	6.13	156.0	36.3			

PBXN-9 FEM: NOL LSGT


LX-14 with FEM HMX – Laboratory Trial Highlights (1)

Experiment Summary

- Standard LX-14 Slurry Coating Processing
- Multiple classes of HMX featured in original composition
- Adjusted HMX to FEM HMX Ratio
- Selected candidates tested for Shock Sensitivity (NOL LSGT)
- Blend 4 (100% FEM HMX substitution) showed the most significant improvement in shock sensitivity
 - Baseline: 236.0 cards (14.7 kbar)
 - Blend 4: 176.0 cards (28.0 kbar)

Sample	FEM/Legacy	NOL Large So	arge Scale Gap Test				
ID	HMX Ratio	50% Card Gap	Pressure (kbar)				
Baseline	0/100	236.0	14.7				
Blend 1	24/76	204.0	20.1				
Blend 2	50/50	202.0	20.5				
Blend 3	50/50	194.0	22.5				
Blend 4	100/0	176.0	28.0				

LX-14 FEM: NOL LSGT

8

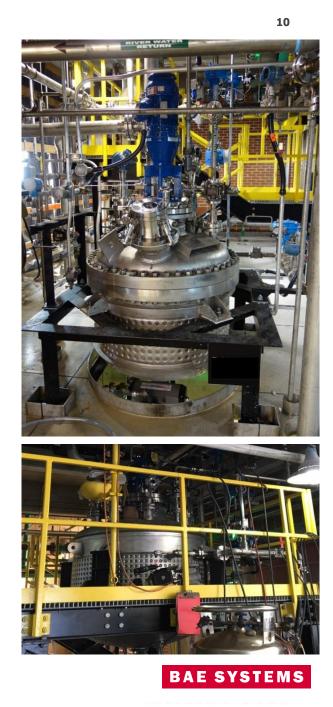
2019 Insensitive Munitions & Energetic Materials Technology Symposium ${\scriptstyle ©}$ BAE Systems

LX-14 with FEM HMX – Laboratory Trial Highlights (2)

Experiment Summary

- 2 blends tested by US ARMY CCDC AC
 - FEM to regular HMX 80/20
 - 100% FEM
- Pressed density ~ 1.81 g/cc
 - 3 pellets per tube
- Lower shock sensitivity at 100% FEM than BAE's result
 - BAE Result: 176 cards
 - CCDC AC Result: 161.5 cards

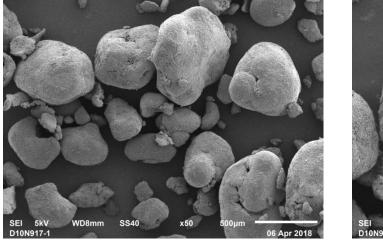
Sample ID	FEM/Legacy HMX						
	Ratio	50% Card Gap	Pressure (kbar)				
Baseline *	0/100	236.0	14.7				
Blend 1	80/20	166.5	31.6				
Blend 2	100/0	161.5	33.8				

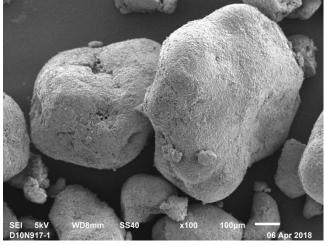


Pilot Scale Manufacturing Effort

Scale-Up Effort @ Holston R&D Pilot Plant

- After successful lab campaign, both formulations were scaled at Pilot Plant in anticipation of larger scale manufacturing
- 2 Pilot Scale Formulation Coating Vessels
 - Smaller Vessel: up to 250 lbs.
 - Larger Vessel: up to 800 lbs.
- Target Batch Size for PBXN-9 and LX-14 with FEM HMX
 - 100-300 lbs.
- Quantities manufactured to date
 - PBXN-9 with FEM HMX (590 lbs.)
 - LX-14 with FEM HMX (536 lbs.)
- Process parameters similar to those for the legacy products
 - Smooth transition to Full Scale Production (~500 lbs. batch size) with optimization effort



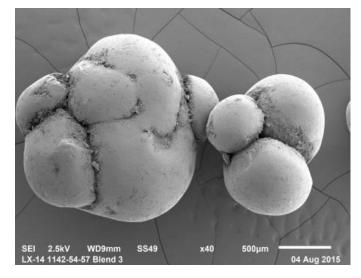

Pilot Plant: PBXN-9 with FEM HMX

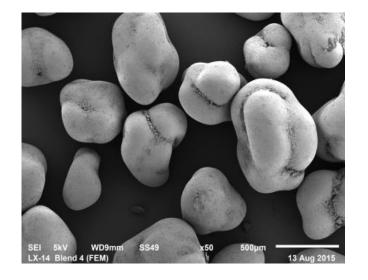
PBXN-9 with FEM HMX - Analytical Result Summary																		
	Batch Size % FI				% FEM	C	ompositio	'n	Bulk	Pressed	Flowdex	Friction	(Granulatio	n	Naval	Impact	VTS
Batch/Notebook #	Lab/Pilot	(lbs.)	70 FEIVI	HMX %	DOA %	Hytemp %	Density	Density	FIOWUEX	Co-eff	Pass #6	Pass #8	Pass #40	N-9	RDX Std	V15		
		(103.)		91.0-93.0	5.0-7.0	1.5-3.0	>0.80 g/cc	>1.73 g/cc		<220	99-100	95-100	0-5	>RDX Std		<0.5		
D10N917-1	Pilot	145	90	92.02	5.77	2.21	0.71	1.69	12	208.74	99.8	98.1	45.2	84.14	12.12	0.0304		
D10N917-2	Pilot	145	100	91.66	5.83	2.50	0.71	1.677	7	121.77	99.9	99.3	5.1	89.13	12.12	0		
D10N917-3	Pilot	300	90	91.78	5.88	2.34	0.67	1.692	9	147.74	99.6	98	9.2	39.81	13.14	0.0247		

• NOL LSGT 50% Gap = **167.5 cards (27.5 kbar)** @ 1.72 g/cc charge density

Legacy PBXN-9 typical value = 200 – 220 cards (significant improvement)

2019 Insensitive Munitions & Energetic Materials Technology Symposium ${\scriptstyle ©}$ BAE Systems


Not Export Controlled per PS-2019-DR-1356



Pilot Plant: LX-14 with FEM HMX

	LX-14 with FEM HMX - Analytical Result Summary													
		% FEM Composition		Bulk Density		Granulation				Insol	Color			
Batch/Notebook #	Lab/Pilot	Batch Size	HMX	HMX %	Estane %	(g/cc)	Volatiles	Retain 5/16"	Retain #4	Retain #50	Retain #80	USSS #40	USSS #60	COIOI
			ΠΙΝΙΛ	94.9 - 96.1	3.9 - 5.1	> 0.85 g/cc	0.10% Max	None	1 max	95 min	98 min	0 max.	5 max.	
D10LX14FEM17-1	Pilot	118 lb.	80	96.1	3.90	0.878	0.071	0	0	84.4	13.2	0	0	White
D10LX14FEM17-2	Pilot	300 lb.	80	95.36	4.64	0.85	0.06	0	0	91.8	72	0	0	White
D10LX14FEM17-3	Pilot	118 lb.	80	95.33	4.67	0.877	0	0	0	94	6	0	0	White

- NOL LSGT: 50% Gap = **178.5 Cards (27.20 kbar)** @ 1.81 g/cc charge density
 - Legacy LX-14 typical value = 200 240 cards (significant improvement)

2019 Insensitive Munitions & Energetic Materials Technology Symposium ${\scriptstyle ©}$ BAE Systems

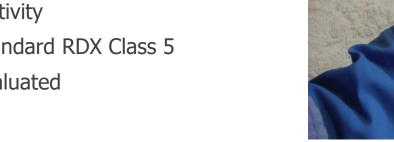
New Effort – Composition A-5 with FEM RDX (1)

Objectives

- Can we achieve the same IM Response Improvement in Composition A-5 with FEM RDX?
- Composition A-5 (98.75% RDX Class 1 and 1.25% Stearic Acid)
- Used in multiple shaped charge/warhead application including the 40mm M430A1

Experimental

- Replace portion of the RDX Class 1 with FEM RDX
- Evaluate how % FEM RDX in Comp A-5 affects the physical properties of the final product
- Down-select candidate for performance and IM properties assessment
- Exclusively laboratory study



New Effort – Composition A-5 with FEM RDX (2)

Experimental (continue)

- Factors evaluated
 - Type of Solvent
 - FEM RDX to RDX Class 1 Ratios
 - Slurry concentration (Solids Loading)
 - Agitation Rate
- General Trend Observed (so far)
 - Increase in FEM RDX reduces particle size and bulk density
 - Flow properties also different to legacy product
 - No significant difference observed in impact sensitivity
 - All candidates less impact sensitive than standard RDX Class 5
 - Shock Sensitivity and Friction Sensitivity to be evaluated
 - 75% FEM RDX vs. 0% FEM RDX

Conclusion

- The use of Fluid Energy Milled Nitramine in Legacy PBX formulation demonstrated significant improvement in Shock Sensitivity
 - PBXN-9 with FEM HMX (90-100%)
 - LX-14 with FEM HMX (80%)
- No degradation in Explosive Performance
- Both products successfully scaled up in Pilot Equipment shall transition to Full Production Scale without complication
 - LX-14 and PBXN-9 with FEM HMX ready for production; and for larger weapon system IM evaluation
- Composition A-5 evaluation on-going; interested to see whether this technology can apply to FEM RDX
 - Shock sensitivity comparison to take place
- Benefits of this technology
 - Relatively low cost to implement (simple solution / short development cycle / limited re-qualification)
 - Cost effective IM Solution
 - No compromise in Explosive Performance

Acknowledgements

	•Phil Samuels
BAE SYSTEMS	 R&D Analytical Group Neil Tucker, Brian Alexander, Jacob Morris, Denise Painter, Chris Long, Todd Dye, Tracy Kelly

