Resonant Acoustic Mixing (RAM) for Coated Explosive Material Manufacturing (Abstract #22241) IMEMTS 2019 (Session 4B)

Brian Alexander*, Myles Donegan, Jacob Morris, Virgil Fung BAE Systems, Holston Army Ammunition Plant, Kingsport, Tennessee, United States 22 October 2019

2019 Insensitive Munitions & Energetic Materials Technology Symposium $_{\odot}$ BAE Systems

Not Export Controlled per PS-2019-DR-1364

Project **Objectives**

- Laboratory evaluation of Resonant Acoustic Mixing (RAM) to manufacture CXM-AF-7 Premix
 - CXM-AF-7 incorporated into AFX-795 for use in Mk 80 series General Purpose Bomb for U.S. Air Force
- Determine advantages of RAM technology over traditional Premix manufacturing Techniques
 - Safety evaluation of RAM technology with explosive powder beds
 - Reduction in coating cycle time
 - Elimination of Slurry Water for process stream

Resonant Acoustic Mixing

- RAM Technology
 - Non-Contact mixing at low frequency (60Hz)
 - High Intensity: 100x's the acceleration of gravity
 - Efficient energy distribution with uniform micro-mixing
- Primary Mixing
 - Mechanism is from collisions driven by inter-particle redistribution
 - Mixing increases with higher acceleration
 - Creates several intense mixing zones

FEW INTENSE MIXING ZONES

BAE SYSTEMS

Explosive **Premix**

- RDX/HMX based Premixes have been traditionally manufactured by two methodologies
 - Aqueous Slurry
 - Water/Explosive slurry is agitated while a plasticizer (i.e. DOA, IDP, DOS) is dispersed onto the crystalline explosive
 - Up to 2,100 Gallons of water utilized per batch of product
 - Requires downstream cycles of dewatering and drying
 - Utilized slurry water represents a waste stream for treatment prior to discharge
 - Products: CXM-3, CXM-7, CXM-9, CXM-11, CXM-AF-X
 - Kettle Coating
 - Water wet explosives are introduced to a steam heated kettle
 - Agitation and steam heat are utilized to dry and coat the premix in-situ

Safety Assessment Constraints

- Preliminary experimental plan was to mix RDX FEM and RDX Class 1 utilizing RAM
- Plan required data assessment of voltages of the powder bed to determine risk factors
 - Voltage measured at powder surface and subsurface Allow for charge density calculation
 - Assumption of voltage was constant throughout powder bed powder behaves as a capacitor
- Discharge of the powder bed could be calculated and compared with ignition energy of RDX classes
- Assumption lead to conservative estimates, but also leads to a project of its own!
- This lead to conducting a Failure Modes and Effects Analysis (FMEA) where the following items addressed the test plan:
 - Polystyrene container was chosen as it offered much lower voltages on the container and powder
 - Required to witness the mixing on the RAM stage
 - Polystyrene breakdown voltage was calc. to be 20kV. Energetic powder not expected to reach this limit
 - ESD prevention allotted for using RDX with DOA present. No dry powder beds were evaluated

RDX Product Verification

- RDX Class 1 (7RC118-88A2) was used for this project
 - ~200 pounds (90kg) was obtained

- RDX Class 1 processed through Fluid Energy Mill unit
 - Particle Size Reduction

Laboratory Slurry Coating

- CXM-AF-7
 - Slurry coated at the BAE Systems R&D Laboratories at HSAAP
 - 10L Slurry Coat Vessels
 - Solids Loading
 - Volume
 - Agitation Rate
 - Temperature
 - None uniform distribution of the plasticizer
 - DOA/Water are immiscible
 - Particles not uniformly distributed in powder bed

BAE SYSTEMS

Attrition Study Slurry Coating vs. RAM

- PSD of Slurry coated RDX
 - Green = slurry coated
 - Red = RDX input blend
- No PSD Reduction from Input Material

- PSD of RAM coated RDX
- Used Class 1 RDX containing 5% water

RAM – Secondary Objective

- Range of voltage encountered during mixing was -3 to 4.6kV, less than that measured on some formulations from storage
- Powder temperature behavior 30G at left and 80G at right

- Slurry coated RDX with 3% DOA \rightarrow FEM; used with dry Cl 1 and dyed DOA in 8 oz. PS jar
 - 16 experiments varying order of addition, mix acceleration and duration, pre-sieving of FEM RDX
- Mix cycles tended to be long, ranging from 2-17 minutes, as we monitored lump destruction/formation
- Mixing was periodically stopped to check voltage and temperature, which was essentially the same behavior as that seen for water-wet Cl 1 in the attrition study
- Composition was determined on top, middle and bottom samples
 - BET, impact and density by pycnometer were determined

Not Export Controlled per PS-2019-DR-1364

- 2% DOA isn't sufficient quantity to coat all particles in the powder bed, as evidenced by number of particles without dye
- Voltage during mixing ranged from -0.7 to 6.9kV
 - Comparable to the voltages measured during the RAM attrition study with 5% water present
- Inclusion of initial "wetting" step did not play a major role in the resulting blend quality.
- Settled on DOA RDX addition order
- Batches with the best visual blend quality exhibited low BET values
- Visual blend quality was effected by three main factors: acceleration, mix time and pre-sieving FEM RDX

Not Export Controlled per PS-2019-DR-1364

Laboratory Kettle Coating

- 5 Pound (2.2kg) Steam heated kettle
- RDX/DOA processing to provide Premix feedstock
 - Coating/Drying in-situ
 - Eliminates slurry water waste stream
- Experimentation conducted at:
 - 1% DOA
 - 3% DOA
- RDX/DOA coated material
 - FEM process to provide input material
- RDX Class 1, RDX FEM, DOA processed in RAM

- Kettle coated Cl 1 RDX with 1% DOA \rightarrow FEM
 - Used with precoated Cl 1 and dyed DOA in 8 oz. PS jar
- 14-run I-optimal quadratic experimental design with acceleration, mix time and pre-sieving step.

	Acceleration, G	Mix time, min	Sieve Size, mm
Low	35	2	1.68 (-12)
Mid	50	4	4.76 (-4)
High	65	6	9.51 (-3/8")

- Composition was determined on top, middle and bottom samples
 - BET, impact and density by pycnometer were determined at EOM

- Contour plot showing blend quality, coarse screen.
- Competing processes at intermediate mixing conditions

- Kettle coated Cl 1 RDX with 3% DOA \rightarrow FEM
 - Used with pre-coated Cl 1 and dyed DOA in 8 oz. PS jar
- Otherwise, duplicated the experiments run under study #2, which used inputs coated at the 1% DOA level.

	Acceleration, G	Mix time, min	Sieve Size, mm
Low	35	2	1.68 (-12)
Mid	50	4	4.76 (-4)
High	65	6	9.51 (-3/8″)

- Mix quality degrading from the 2-4 minute range, and then recovered.
 - Pointing to competing processes
- Terms in model of differing order here, indicating course of mixing affected by extent of DOA pre-coat

Mix time (min)

LabRAM CXM-AF-7 Optimal Process Dev to Support AFX-795 Trials

- Neat Class 1 RDX used to limit the amount of kettle coating
- 1% DOA precoated onto Cl 1 RDX to be milled
 - Alleviate FEM feeding challenges
 - Reduce static charge in initial RAM mixing
 - Possible improvement in FEM shelf life
- Stayed with DOA containing dye to aid in visual observation
- Shift to shorter mix times

Acceleration (G)

AFX-795 Comparison of RAM and Slurry CXM Inputs

• RAM

- 23 batches were blended into a composite
- Slurry Coat
 - 2 slurry batches were blended

	RAM CXM-AF-7	Slurry CXM-AF-7		
BET, m²/g	0.088	0.146 (weighted avg)		
Microscopy				

AFX-795 **Process and Observations**

- Melt Pour Processing
 - Wax was melted in steam kettle under agitation
 - CXM-AF-7 was introduced and allowed to blend
 - Remaining DOA added
 - Introduced AI and lecithin components and allowed to mix to completion
 - Observations
 - Baseline CXM-AF-7 (Slurry Coated) caused a greater rise in viscosity during incorporation
 - Difficulty with pull down and incorporation of AI in mix with baseline CXM

AFX-795 Data Comparison

	LSGT, Cards	BAM Friction, N	ERL Impact, cm	ESD, J	DSC Peak, °C	VTS, ml/g
Baseline (Slurry)	136- 157*	298.8	181.97	0.29	244.49	0.1649
RAM	134.5	288.0	213.79	0.40	243.62	0.1916

*= BAE Systems Historical Data Range for AFX-795

Slurry Versus 55 Gal RAM Elapsed Hours / 4,100 lbs. CXM-AF-7

*RAM batch size = 300lbs with blend time 3 min & cycle time 0.3hrs

BAE SYSTEMS

Conclusions

- Laboratory experiments indicate that it is feasible to apply RAM technology as an alternative to the slurry coating process for the manufacture of CXM-AF-7 Premix
- Monitoring:
 - Maximum voltage of the product was not influenced by mix acceleration or time (with presence of DOA or water)
 - At low fill levels no temperature rise was observed; at production-scale fills, one would need to determine timedependent temperature rise at conditions
- Mixing progress appears to be dependent on extent of DOA coating on inputs
- Early indications show moderate mixing times and accelerations can result in competing processes where the number of lumps are decreasing but size of a few lumps are growing larger
- RAM appears to result in agglomerates of DOA-coated FEM, which may account for the ease of incorporation into AFX-795
- BET was found to be a good predictor of extent of DOA distribution into the powder
- AFX products comparable

