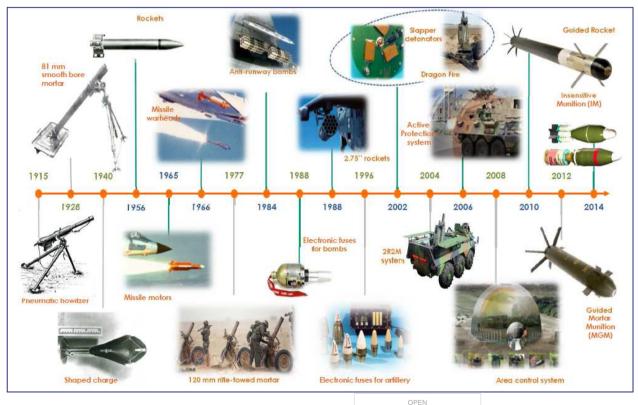
THALES

Modelling tool for industrial application – Melt-cast ammunitions

IMEMTS 2019 – SEVILLA, SPAIN

Teddy GILLOUX, Christophe Coulouarn

Abstract n°22252


www.thalesgroup.com

Summary

- Thales VTS Fr activities
- Need of numerical tool for cooling optimization phase
 - **>** Objectives
 - > Data acquisition
- Modelling interface
 - Geometry parametrization
 - Cooling process
- Experimental study on retract
- Conclusion

Thales VTS Fr activities

Last centuries

Mortar Shaped charge Rockets Anti-runway bomb Pyrotechnics components Area control system Active protection systems Guided rocket Guided mortar **Insensitive Munitions**

Need of a numerical tool for cooling optimization phase

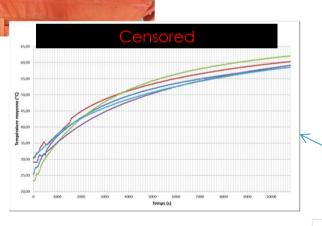
Objectives

Development of a numerical tool to implement TNT-based explosive composition in a shell body

- > Whatever the shell
- > Whatever the energetic material formulation
- ➤ Quick definition of set parameters for industrial equipment
- > HMI for industrial use

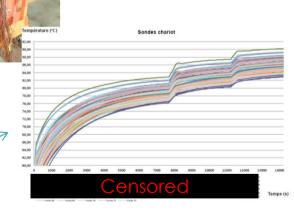
Need of a numerical tool for cooling optimization phase

Data Acquisition on melt-cast process


- > Process parameters
 - Preheating phase
 - Formulation process
 - Controlled solidification
- Ammunition design
 - 120/81 mm mortar ammunitions
 - Shaped charge
 - Rockets
- > Energetic materials
 - Liquid and solid density
 - Thermal properties

OPEN

THALES

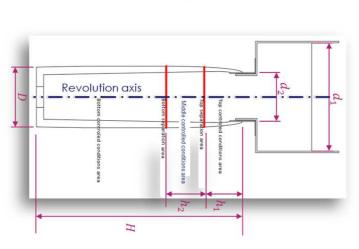

> Preheating system analyses

- 120 probes
- 2 temperatures
- 6 h registration
- 6 cart's positions
- 2 weeks studies

> Cooling system characterization

- 72 probes
- 3 temperatures
- 4 h registration
- 12 positions
- 1 week

THALES


OPEN

Abacus

CCE/PDI/2019 – 502 rev A Vehicles & Tactical Systems Business Line/

Modelling interface Geometry parametrization

Fully parametrised

Heat equation solved: $\rho C_p \frac{\partial T}{\partial t} - V. (k \nabla T) = 0$

Axisymmetric model

Boundary condition: heat flux $q = h \cdot (T_{ext} - T)$

With h, the HT coefficient which depends on:

The time The area of the body

The cooling fluid nature

The cooling fluid temperature The cooling fluid velocity

With T_{ext} , the cooling fluid temperature The convection conditions

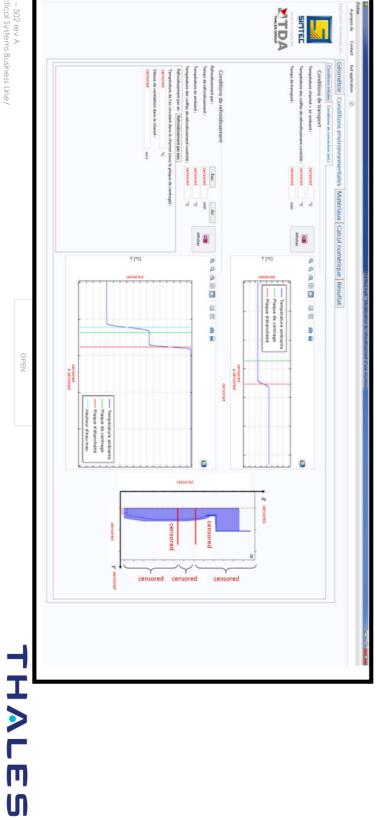
THALES

Modelling interface

Energetic materials

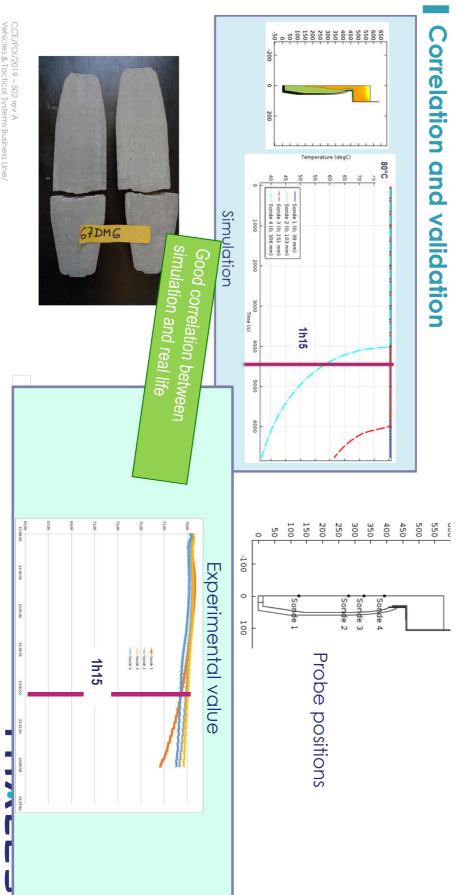
	TB 1180	
State	Solid	Liquid
Density		
Specific Heat	C	C
capacity (J.kg ⁻¹ .K ⁻¹)	e	e
Thermal Conductivity	n	n
(W.m ⁻¹ .K ⁻¹)	S	S
Thermal diffusivity	0	0
(mm ² .s ⁻¹)	r	r
Solidification point	e	e
(°C)	d	d
Heat of solidification (kJ.kg ⁻¹)		

TB 1180

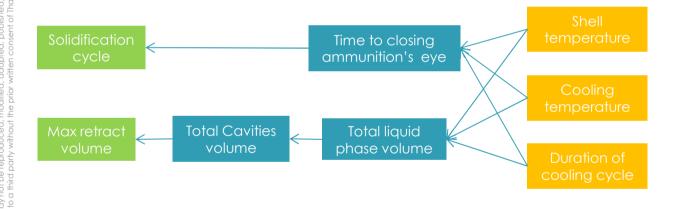

9

CCE/PDI/2019 – 502 rev A Vehicles & Tactical Systems Business Line/

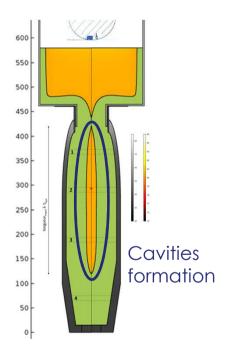
Modelling interface


Using COMSOL Multiphysics software

Implementation on customized interface



Modelling interface



Phenomena analyses

> Retract are linked to different liquid and solid densities

OPEN

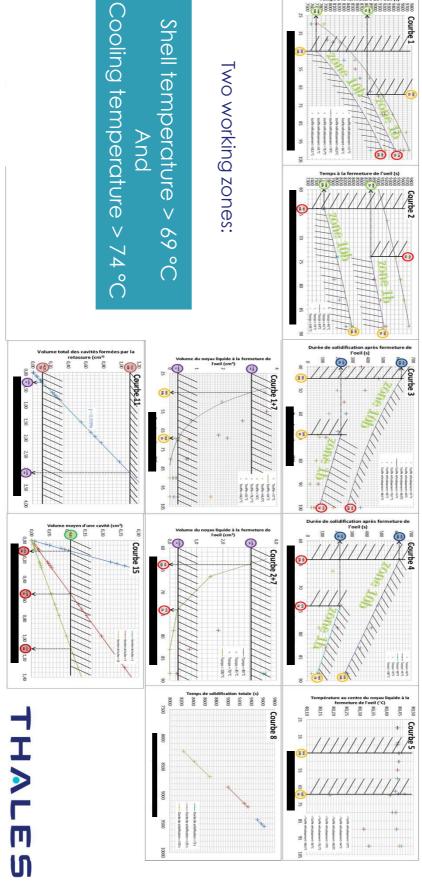
11

_

CCE/PDI/2019 – 502 rev A Vehicles & Tactical Systems Business Line/

THALES

500


500

600

450

Theoretical study on retract

Determination of industrial parameters

Conclusion

Development of HMI modelling solidification of melt-cast process

- Requires lots of industrial data
- > Needs of design parameters
- > Characterization of formulations

Useful for

- > Mastering the production process
- > Implementation of new ammunition design or formulation to industrial scale

Future

Optimization for implementation of retract

CCE/PDI/2019 – 502 rev A
Vehicles & Tactical Systems Business Line/

y way, in whole or in

Log of changes

Revisions	Description	Date
001	Creation	
002		
003		

Approval

Actors	Name and role	Signature	Date
Written by	T. GILLOUX		
Verified by	C. COULOUARN		
Approved by	P. DOIGNON		

This document may not be rep part or disclosed to a third par

