

Contents

- BAE Systems, Land UK: Who we are
- RAM In brief
- RAM facilities at Glascoed
- Comparison Trial
 - Energetic Materials
 - The process: Conventional vs. RAM
 - Material Analysis
 - Chemical composition & Stability, Thermal, Physical, Mechanical analysis
 - Hazard and Performance testing
 - RAM Advantages
- Conclusions

BAE Systems, Land UK: Who We Are

BAE Systems, Land UK: Who We Are

Glascoed:

- 1000 acres
- 500-600 people
- Munitions manufacturing site
- Fill, assemble & Pack
- Heavy & Medium Calibre
- Test Facilities

RAM - In brief!

- Resodyn's ResonantAcoustic[®] Mixing technology
- Acoustic energy transferred to mechanical motion
- Efficient system operates in resonance
- Low frequency, but high accelerations

Both images are the property of Resodyn

RAM - In brief!

• The 'RAM Family':

LabRAM 500g

LabRAM II 1 kg

RAM 5 36 kg

RAM 55 400 kg

RAM facilities at Glascoed

LabRAM and LabRAM II

Resodyn LabRAM systems

Falcon Project Controls

This work: PBX Comparison Trial

Objective: Determine whether the properties of RAM & conventionally processed material are comparable.

- Energetic Materials
- Comparison of processes
- Compare material properties
 - Various RAM parameters
 - RAM vs. Conventional
- Assessment of advantages
- Other work (incl. MIC)

Energetic Materials

Main Topic of Comparison

Polymer Bonded Explosive (PBX)

BAE Systems proprietary PBX:
 Aluminised RDX / HTPB binder

PBX - RDX / HTPB (non-aluminised)

Low Vulnerability Ammunition Propellant (LOVA)

Nitrocellulose-free, RDX / EVA binder

The Processes: Conventional vs. RAM

Planetary – HKV5 (5 kg)

LabRAM (350 g)

The Processes: Conventional vs. RAM

Planetary – HKV5

- Bladed mixer: High shear, at localised regions
- Mix duration
 - PBX: 4 hours or a few days (5 or 1600 kg)
 - LOVA: 5 hrs, over 2 days (6.5 or 18 kg)
- Incremental ingredient addition: 100 minutes

LabRAM / LabRAM II

- No internal moving parts: Low shear, throughout
- Mix duration
 - PBX: circa. 20 mins (350 g or 1.2 kg)
 - LOVA: circa. 1 hr (<1 kg)
- One-step ingredient addition: 20 minutes

The Processes: Sample Manufacture

Vacuum Casting (Planetary only):

- Direct fill from vessel base into vehicle
- Vessel and filling chamber kept under vacuum throughout

Manually filling (utensils)

- Hand fill from vessel into vehicles
- Vacuum applied to samples post-fill

Top of LSGT Tubes

The Process: RAM Parameters

- Process variables:
 - Acceleration level (30-80 G)
 - Main mix duration (2.5 40 minutes)

- Process constants, including:
 - Layering: 'Liquid Sandwich' approach
 - Mix Regime:
 - Wetting stage (low G, 2 minutes)
 - Main mix stage (x G, y minutes)
 - De-gas stage (low G, 5 minutes)

13

The Process: RAM Parameters – Acceleration

Acceleration: 30-80 G Duration: 40 minutes continuous

LabRAM power input & visual inspections Near-consistent power (plateau point t_p) was taken as level of sufficient mix completeness 50 G was lower limit for mixing – 'flat-lining' of trace or powdering

Power variation a sign of mixing action / change in mix composition (> 50 G)

Material Comparison

- Compare material properties:
 - Various RAM parameters
 - RAM vs. Conventional

- Material Analysis :
 - Visual Observations
 - Chemical composition and stability
 - Thermal characterisation (DSC, T_g)
 - Physical characterisation Density & Hardness
 - Mechanical Compressive strength
 - Hazard & Performance EMTAP tests, LSGT & VoD

LSGT Set-Up

Material Comparison

Variation in sample quality – 40 G, 60 G, 60 G with vacuum

- Visual Observations: \leq 50 G, or $<\frac{1}{2}t_p$ at 55-80 G \rightarrow Uncured material / incomplete mixing
- Chemical composition, vacuum stability, and thermal properties (DSC & T_q):
 - Little variation with acceleration level, or mix duration
 - RAM and planetary samples were comparable
- Density: Comparable densities for all samples (RAM and planetary)
 - Increased consistency when prepared with vacuum

Material Comparison

Shore A:

- Correlated to visual observations
- Values generally increased up to t_p
- <50 G:
 - large range → poor curing characteristics
- ≥50 G:
 - Reduced range (within specification)
 - RAM & planetary samples reasonably comparable
 - Possible signs of harder surface with planetary

RAM Repeatability

Material properties

Compressive Strength Properties:

Improved properties with increasing RAM mix duration (nearer to t_p) & >50 G

- RAM samples: greater compressibility
- Planetary sample: appeared stiffer
 - Supports Shore A data
- Differing mix characteristics altering polymer matrix formation (?)

Hazard and Performance testing

 All performance and hazard data suggests RAM and Planetary mixing produce material with very similar Hazard and Performance characteristics

VoD Set-Up

Test	RAM	M Planetary	
F of I	111	112	
T of I	209.8	214.3	
Electric Spark	Ignitions at 0.45J, No ignitions at 0.045J		
Ease of Ignition	Fails to ignite		
Train Test	Ignites and supports the train steadily throughout		
LSGT, 50% point & Pressure	32.00 mm 4.401 GPa	29.30 mm 4.776 GPa	
VoD, m/s	7393 ±641 (7503 ±228)	7483 ±578 (7563 ±145)	
GLS (no voids)	No Goes up to 300 MPa	No Goes up to 300 MPa	

Assessment of Advantages

- Material Comparison
 - Shows that RAM & Planetary samples are not significantly different
 - Results expected given formulation is identical
- Why Change? Advantages during this Project
 - Mix duration: <30 vs. 100 minutes mix time
 - Single addition step vs. Incremental

Examples Demonstrating Advantages

LOVA

- Mix Duration: 1 hr vs 5 hrs
- Process time (incl. extrusion): <1 day vs 2 days
- Additional Advantage: Reduced solvent required

LOVA Dough & Granules

SC Fill & X-ray

22

Examples Demonstrating Advantages

Flexibility: Shaped Charges MIC

- Planetary vs. RAM-Batch vs. RAM-MIC
- RAM reduces time, process steps and significant waste
- Table Parameters for producing 6-off Shaped Charges:

Parameter	Conventional Batch (5kg mixer)	RAM - Batch (1.1 kg ≡ 3-off SCs)	RAM – MIC (one at a time)
Mix Preparation (ingredient adding)	100 mins	40 mins (~20mins per batch)	120 mins (~20mins each)
Mix Duration	100 mins	36 mins (18 mins)	102 mins (17mins)
Mix mass	5 kg	2.2 kg (1.1 kg)	2.1 kg (350 g)
Waste	3.08 kg	280 g (140 g)	180g (~30 g)
Filling Time	~40 mins	60-80 mins (40 mins)	N/A
Total time	240 mins	156 mins (78 mins)	222 mins (37 mins)
Cleaning	Cleaning of vacuum cast assembly, mixing bowl and lid. And general cleaning of room and weighing utensils	Cleaning of vacuum cast assembly, mixing bowl and lid. And general cleaning of room and weighing utensils	Cleaning of header and lid. General cleaning of room and weighing utensils

BAE SYSTEMS PROPRIETARY
Copyright 2019 © BAE Systems plc. All Rights Reserved. BAE SYSTEMS is a trademark of BAE Systems plc. Permission to reproduce any part of this document should be should be sought from BAE Systems.

BAE SYSTEMS

Conclusions (1)

- Comparison study of PBX manufactured via RAM & Conventional Planetary methods
- RAM Processing (for BAES LabRAM set-up):
 - Highest consistency and quality samples when ≥55 G, times > ½ t_p
 - Power input analysis (variation)
 - Visual appearance (vessel & level of curing)

Conclusions (2)

- RAM samples were very comparable to planetary samples, with respects to:
 - Physical, chemical, and thermal characterisation
 - Small scale hazard sensitiveness & performance data
- Possible Variation in polymer matrix formation Compression and Shore A (?)
- Advantages emphasised with scale up
 - Mix duration
 - Number of process steps
 - Solvent reduction
 - Flexibility of method, on a single platform
 - Waste reduction

Acknowledgements

- UK Ministry of Defence
- Falcon Project

Thank you and Any Questions?

For any further Question, please email me at:

Rosie.Davey@baesystems.com

Restrictions on use:

Copyright 2019 © BAE Systems plc. All Rights Reserved. BAE SYSTEMS is a trademark of BAE Systems plc.

Permission to reproduce any part of this document should be should be sought from BAE Systems.