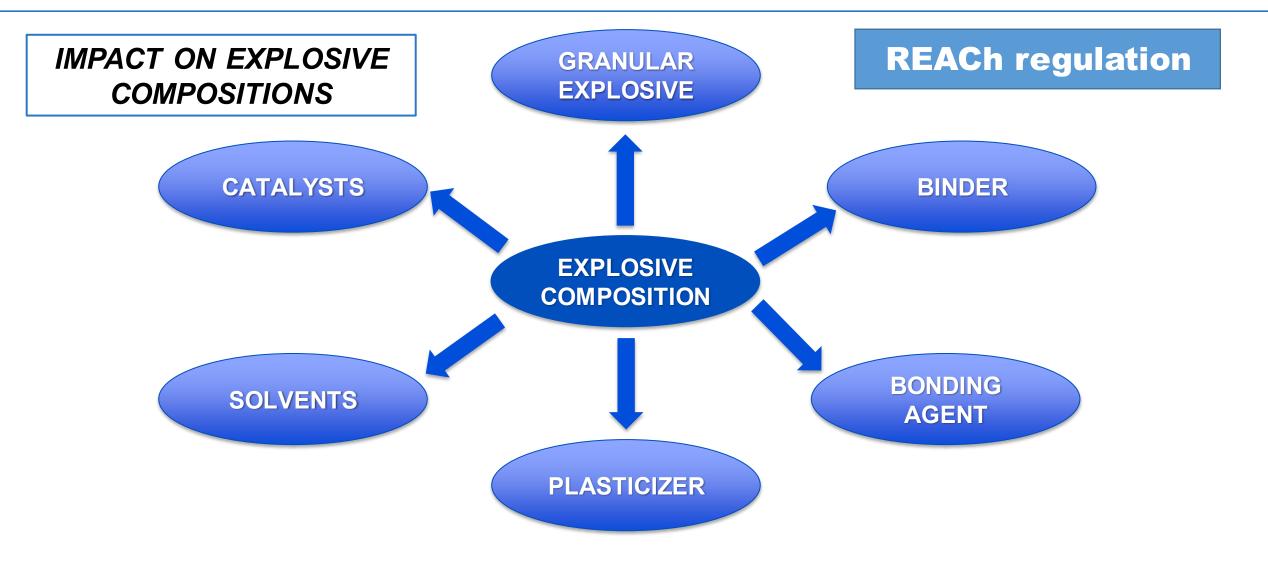


ECH polymerization Qualification of a solvent compatible with REACh regulation

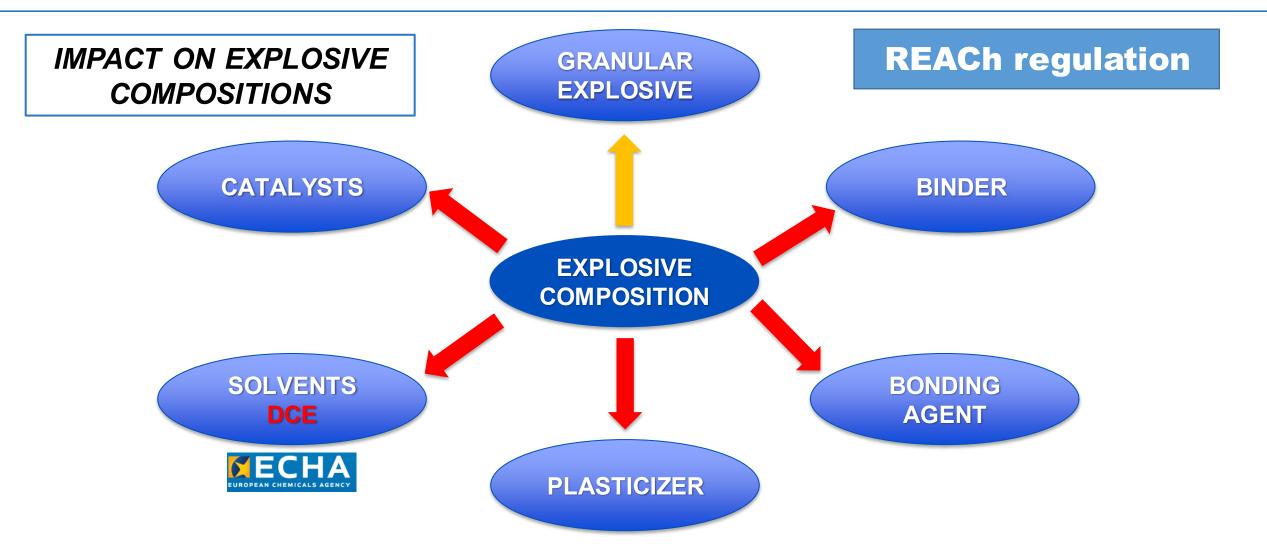
G. Eck, M. Fourdinier, T. Alaime, C. Bedos, V. Chauffour

Middle term replacement of DCE Lab scale results Process file for scaling up to industrial scale

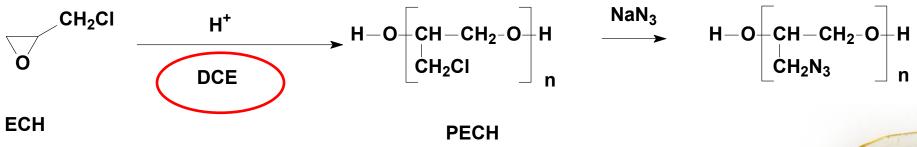
- Registration, Evaluation, Authorization and Restriction of Chemicals
- Adopted to improve the protection of human health and the environment from the risks that can be posed by chemicals
- International Traffic in Arms regulations / Export Administration Regulation
- Designed to help ensure that defense related technology does not get into the wrong hands


REACh regulation

REACH applies to all chemicals (except polymers)


- Chemicals involved in industrial process
- Chemicals in our day-to-day lives : cleaning products, paints, clothes, furniture, electrical appliances,...
- Companies must identify and manage the risks linked to the substances they manufacture and market in the EU as manufacturers, importers or downstream users

In the long run, the most hazardous substances should be substituted with less dangerous ones



Impact on PECH / GAP synthesis

Impact of REACH regulation on DCE use as a solvent

→ Authorized for use up to the end of 2021

→ Prohibited after that

Impact on PECH / GAP synthesis

Middle term replacement

- Organic solvent not yet impacted by REACh
- Process file ready for scale up to the industrial workshop

Long term replacement

Research studies to find new ways to polymerize ECH

Middle term replacement of DCE Lab scale results Process file for scaling up to industrial scale

Experiments performed on 350 g. of ECH in DCE, solvents A and B

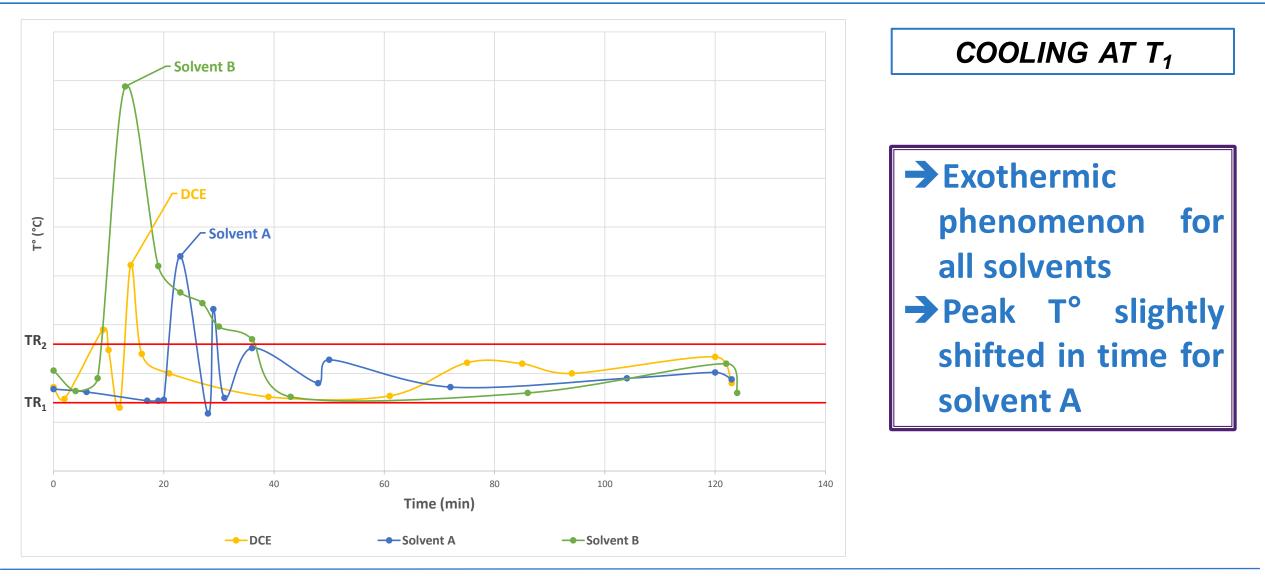
- Reaction medium T° set between TR1 and TR2
- Double jacket T° set at T1 or T2
- Addition rate of ECH regulated by the reaction medium T°

Special attention to

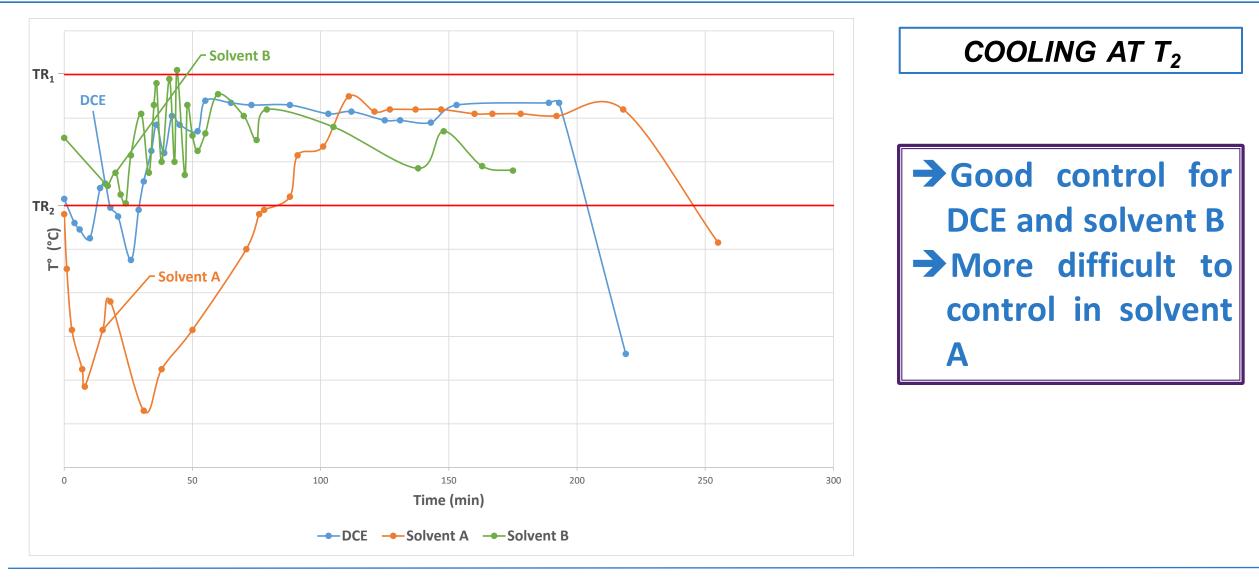
- The initiation of the polymerization and the temperature peak that is observed when the reaction starts.
- The propagation phase of the polymerization
- The characterization of the polymer PECH: Mn / Mw and hydroxyl content

		Double Jacket T°		PECH chara	CH characterizations	
Ref.	Solvent	(°C)	Mn	Mw	I	OH content (eq/kg)
Average at industrial scale		1790	1890	1.05	0.80	
DCE-1	DCE	T ₂	1670	1890	1.13	0.80
DCE-2	DCE	T ₁	1750	1890	1.08	0.75
A-1	А	T ₂	1690	1910	1.13	0.86
A-2	А	T ₁	1770	1910	1.08	0.84
A-3	А	T ₁	1820	1960	1.08	0.80
B-1	В	T ₁	1770	1900	1.08	0.83
B-2	В	T ₂	1750	1910	1.09	0.78
B-3	В	T ₁	1770	1910	1.08	0.81

		Double Jacket T°	PECH characterizations			
Ref.	Solvent	(°C)	Mn	Mw	I	OH content (eq/kg)
Average at	industrial scale	e	1790	1890	1.05	0.80
DCE-1	DCE	T ₂	1670	1890	1.13	0.80
DCE-2	DCE	T ₁	1750	1890	1.08	0.75
A-1	Α	T_{2}	1690	1910	1.13	0.86
DCE-2 seems representative of the industrial scale						
A-3	А	T ₁	1820	1960	1.08	0.80
B-1	В	T ₁	1770	1900	1.08	0.83
B-2	В	T ₂	1750	1910	1.09	0.78
B-3	В	T ₁	1770	1910	1.08	0.81



		Double Jacket T°	PECH characterizations			
Ref. Solvent		(°C)	Mn	Mw	I	OH content (eq/kg)
Average at industrial scale			1790	1890	1.05	0.80
Reproducible results for experiments performed in the same conditions						me
A-2	A	T ₁	1770	1910	1.08	0.84
A-3	Α	T ₁	1820	1960	1.08	0.80
B-1	В	T ₁	1770	1900	1.08	0.83
B-2	В	T ₂	1750	1910	1.09	0.78
B-3	В	T ₁	1770	1910	1.08	0.81


		Double Jacket T°		PECH characterizations		
Ref.	Solvent	(°C)	Mn	Mw	I	OH content (eq/kg)
Average at	industrial scal	0	1700	1200	1 05	
→At lab	scale, no sig	nificant impact o	f polym	erizatior	n condi	tions on
PECH characteristics						
A-1	А	T ₂	1690	1910	1.13	0.86
A-2	А	T ₁	1770	1910	1.08	0.84
A-3	А	T ₁	1820	1960	1.08	0.80
B-1	В	T ₁	1770	1900	1.08	0.83
B-2	В	T ₂	1750	1910	1.09	0.78
B-3	В	T ₁	1770	1910	1.08	0.81

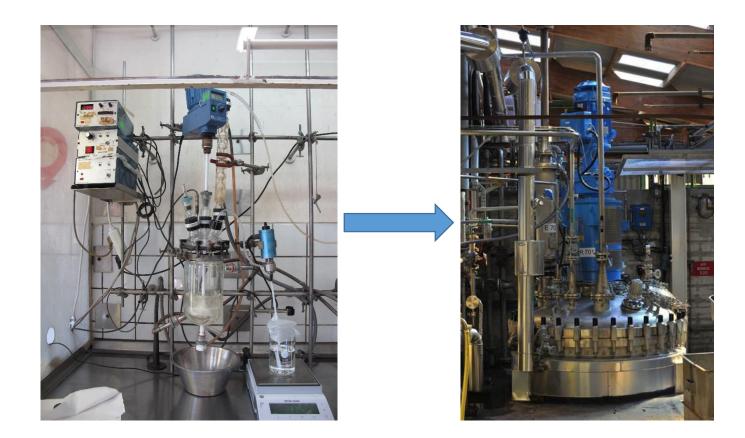
LAB SCALE RESULTS

CONCLUSION

Based on lab scale experiments, solvent B seems to be the best candidate to replace DCE

Double Jacket T°	PECH characterizations			
(°C)	Mn	Mw	OH content (eq/kg)	
T ₁	1770	1900	0.83	
T ₂	1750	1910	0.78	

Scale up to industrial scale to be made



Middle term replacement of DCE Lab scale results Process file for scaling up to industrial scale

PROCESS FILE

- Material balance
- Heat balance
- Sequence of manufacturing steps
- Production time

Comparison for solvent B and DCE

PROCESS FILE

Material balance

	Vessel N°1	Vessel N°2
Raw materials	Initial loading	Recovered or engaged quantities
ECH	M1	0 kg
Solvent B	M2	M2
Initiator	M3	0 kg
Catalyst	M4	Reacted
PECH		M1
Washing ingredients		M5

Heat balance

• Heat exchange capacity of reactors (kcal/h) : $\phi = KxSx\Delta T$

- □ K = Heat transfer coefficient (kcal/h/m².k)
- \square S = Exchange area (m²)
- $\Box \Delta T = Mean logarithmic temperature Cold fluid / Hot fluid$

• Amount of heat (J.) : $Q = m x C p x \Delta T$

- m = Mass of components (kg)
- Cp = Specific heat of the components (J/kg.K)
- $\Box \Delta T$ = Temperature difference Initial state / Final state

PROCESS FILE

Heat balance

Synthesis phase	Heat balance (compared to DCE in %)			
	Q _{Total} (kcal)	72%		
Loading and heating	t (min)	80%		
	$\Phi_{cooling\ medium}$ (kg/h)	100%		
	Q _{Total} (kcal)	99.8%		
Polymerization	t (min)	100%		
	$\Phi_{cooling\ medium}$ (kg/h)	100%		
	Q _{Total} (kcal)	97.6%		
Solvent extraction	t (min)	96%		
	$\Phi_{heating\ medium}$ (kg/h)	100%		

Middle term replacement of DCE

- Lab scale results
- □ Scale up
- Process file for scaling up to industrial scale

- One of the most important issue induced by REACh regulation is the replacement of DCE, the polymerization solvent for the synthesis of PECH.
- A middle term solution has already been found
 - **DCE could be replaced by solvent B.**
 - The obtained PECH has the same characteristics than the current one produced at industrial scale.
- Long term research studies are in progress in order to find a sustainable replacement product.

- Marion FOURDINIER, Thibaud ALAIME and all the laboratory team for experiments on PECH synthesis
- Céline BEDOS, Vincent CHAUFFOUR and the process team for the work on the scale up to the industrial scale

AND

French DGA for its financial support

Thank you for your attention Questions ?

