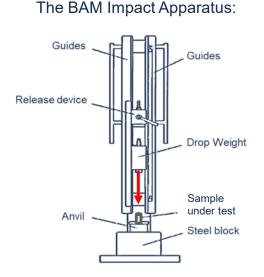


Small Scale Impact Sensitivity Testing of Energetic Materials under Temperature and Relative Humidity

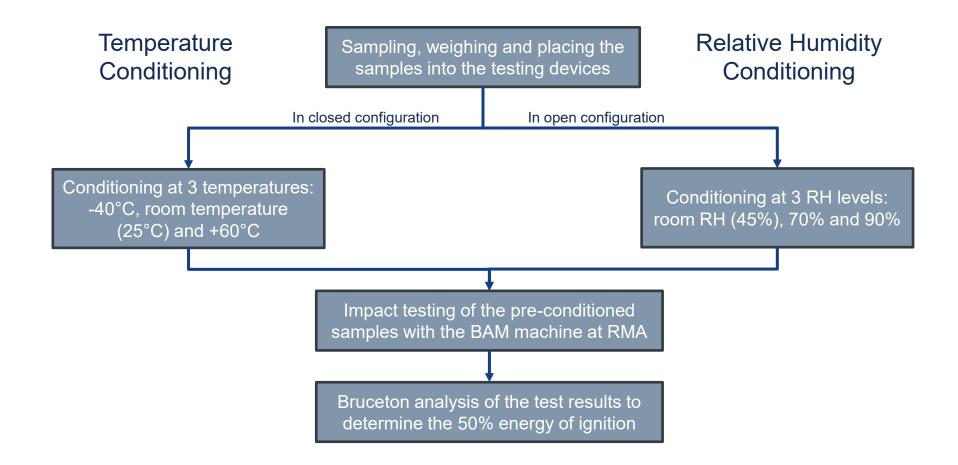
EMTWG, Oslo, Norway, 13 - 16 May 2024

Alexane Esposito¹, Christelle Collet², Christopher Hollands², Romuald Van Riet³

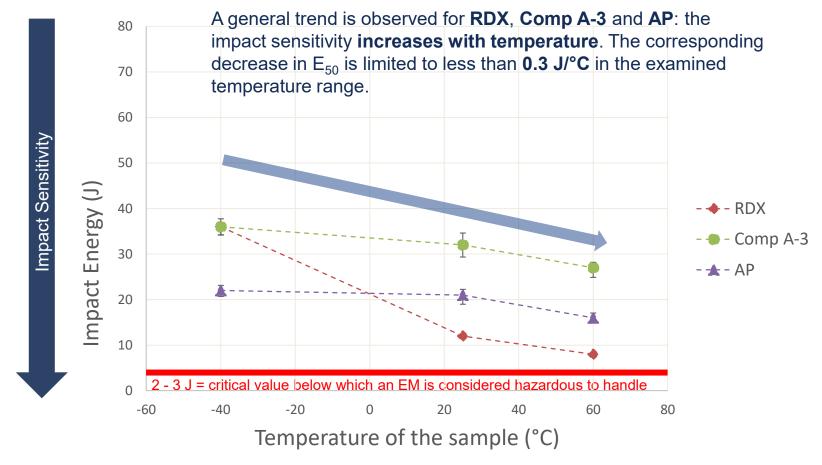
¹ ENSTA Bretagne, Brest, France


² Munitions Safety Information Analysis Center (MSIAC), Brussels, Belgium
³ Royal Military Academy, Brussels, Belgium

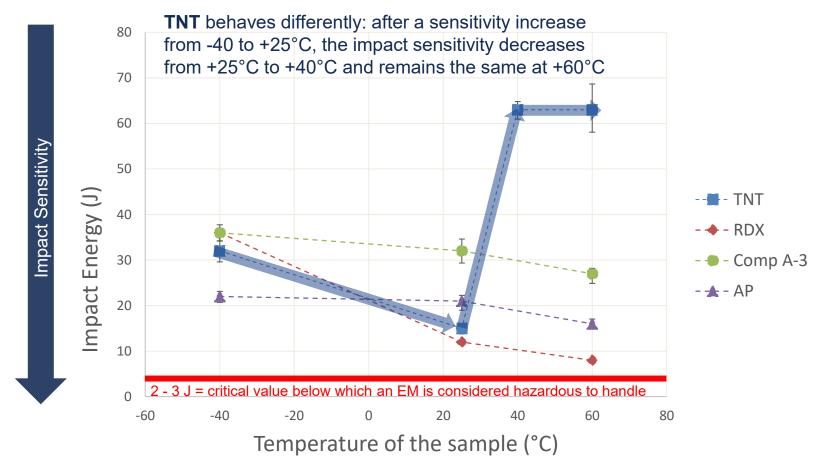
Supporting Munitions Safety


Introduction

- Small scale sensitivity tests are part of the qualification process for energetic materials intended to be used in military systems
- A review conducted in 2023 by MSIAC on impact sensitivity testing methods (MSIAC limited report L-298) identified a lack of understanding of the effect of temperature and of relative humidity (RH) on the small scale impact sensitivity of energetic materials
- The purpose of this study is to contribute to fill in this gap for a selection of energetic materials:
 - **RDX** Type I Class 1 \rightarrow common ingredient typically used in high explosive formulations
 - Ammonium Perchlorate (AP) Type 1 → common ingredient typically used in composite propellants
 - **TNT** \rightarrow common explosive used alone or as a matrix in warheads
 - Comp A-3 (91 wt.% RDX / 9 wt.% Wax) Type I Class 1 → common explosive formulation used in booster charges



Sample Preparation & Testing Method



Influence of Temperature



Influence of Temperature

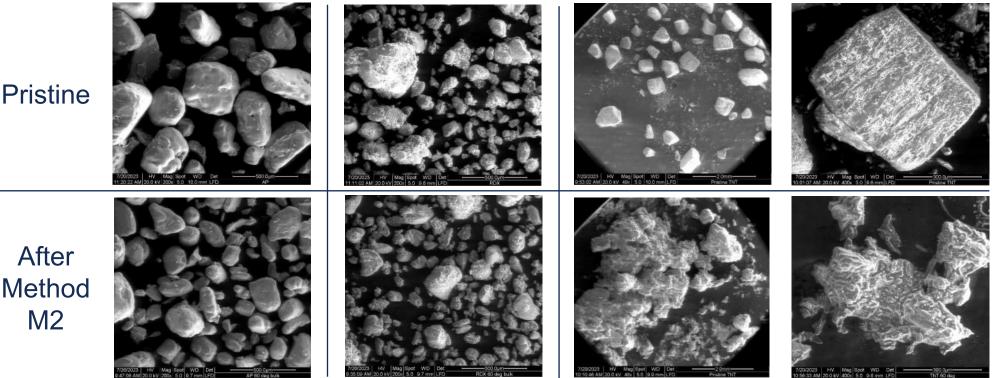
 To examine if the results obtained at high temperatures were reversible, three alternate preparation methods were used on AP, TNT and RDX:

• Effect of conditioning the samples in the test device vs bulk conditioning → no effect

Energetic material	E ₅₀ at + 25°C	E ₅₀ at + 60°C	Method M1	Method M2
TNT	15 J	63 J	65 J	66 J
RDX	12 J	8 J	7 J	7 J
AP	21 J	16 J	16 J	17 J

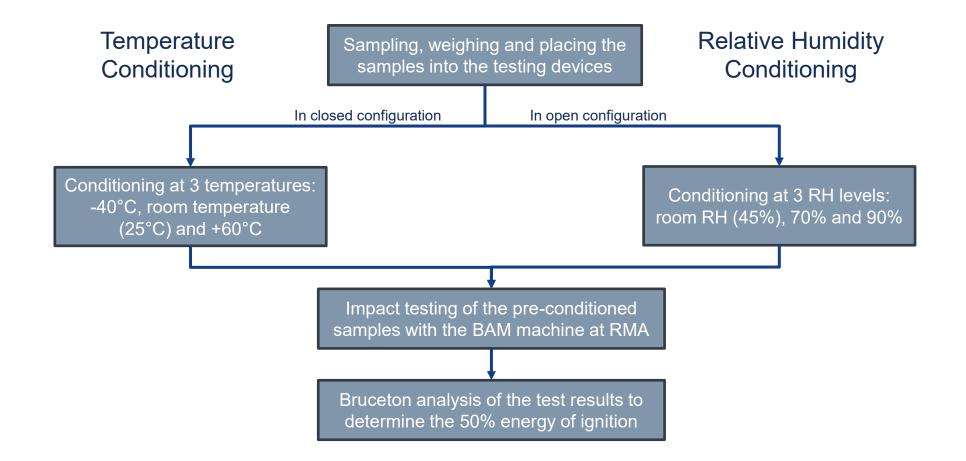
• Effect of **agitating** the samples while bulk conditioning \rightarrow total reversibility

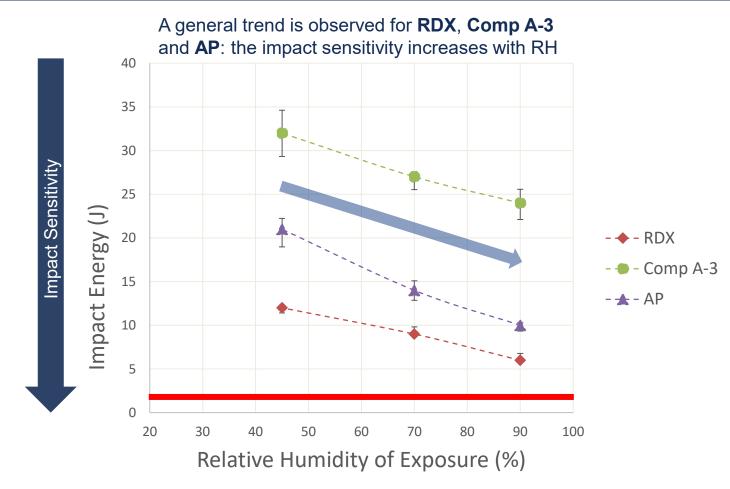
Energetic material	E ₅₀ at + 25°C	E ₅₀ at + 60°C	Method M1	Method M2	Method M3
TNT	15 J	63 J	65 J	66 J	16 J
RDX	12 J	8 J	7 J	7 J	11 J
AP	21 J	16 J	16 J	17 J	21 J


AP

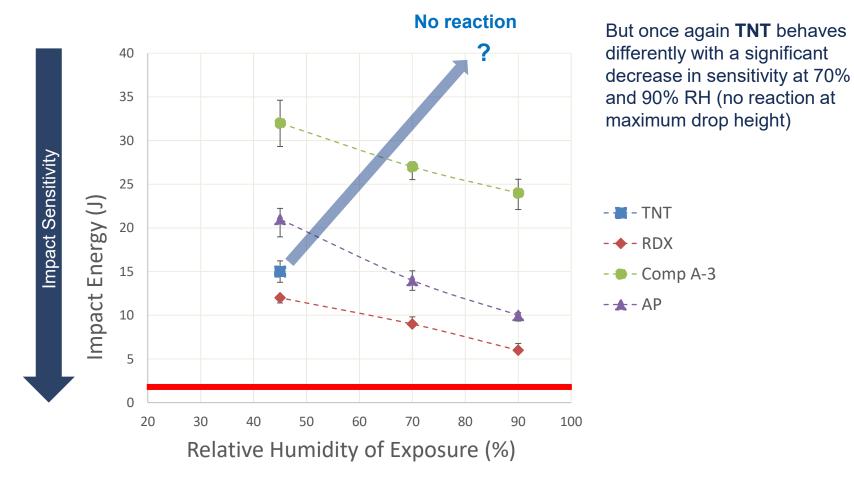
Supporting Munitions Safety

- SEM images of pristine and bulk conditioned samples (Method M2 no agitation)
- Evidence of agglomeration is observed for TNT particles


RDX



Sample Preparation & Testing Method (Reminder)


Supporting Munitions Safety

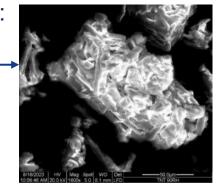
Influence of Relative Humidity

Supporting Munitions Safety

• Effect of conditioning the samples in the test device → Partial reversibility for TNT, irreversibility for RDX & AP

Energetic material	E_{50} at 45% RH	E ₅₀ at 90% RH	E ₅₀ at room RH after conditioning at 90% RH in the test apparatus
TNT	15 J	> 100 J	79 J
RDX	12 J	6 J	6 J
AP	21 J	10 J	10 J

• Effect of **bulk conditioning** vs in the test device → Total reversibility for TNT, partial reversibility for RDX & AP


Energetic material	E ₅₀ at 45% RH	E ₅₀ at 90% RH	E ₅₀ at room RH after conditioning at 90% RH in the test apparatus	E _{₅0} at room RH after bulk conditioning at 90% RH	
TNT	15 J	> 100 J	79 J	14 J	
RDX	12 J	6 J	6 J	9 J	
AP	21 J	10 J	10 J	18 J	

- The impact sensitivity results observed under high RH were not expected:
 - The increased impact sensitivity observed on RDX, AP, and Comp A-3 is in contradiction with previous results by Coffey and DeVost [1]
 - The irreversibility of the change in impact sensitivity after drying was also not expected (also in contradiction with [1])
- These results could be attributed to biases in the preparation method:
 - Drying of the samples before impact testing was conducted at +60°C which, in combination with RH, led to a change in the morphology of TNT particles —

 Evidence of incompatibility was observed on the AP samples conditioned directly in the test apparatus, leading to AP discolouration

[1] Coffey, C.S. & DeVost, V.F., Drop Weight Impact Machines - A Review of Recent Progress, NSWC Report, 1986 11/04/2024 Unclassified / Unlimited Distribution

- Conclusion on the influence of temperature:
 - For **RDX**, **AP** and **Comp A-3**, an increase in impact sensitivity with temperature is to be expected, but seems to be limited to a decrease in E₅₀ values of less than **0.3 J/°C** in the examined temperature range.
 - For **TNT**, the impact sensitivity first increases with temperature, before suddenly decreasing beyond a critical temperature between +30 and +40 °C.
 - At high temperatures, the influence of the conditioning method on the reversibility is strong. The possible contribution of a change in morphology under high temperature deserves further investigation.
- Conclusion on the influence of relative humidity:
 - An increase in sensitivity is to be expected for **RDX**, **Comp A-3** and **AP**, while **TNT** exhibits a significantly reduced sensitivity under increased RH.
 - The study of the reversibility of the RH effects does not allow to draw a firm conclusion as the results were biased by the conditioning method.

- A notable influence of temperature and RH conditioning was identified on the impact sensitivity for the four materials tested: AP, RDX, TNT and Comp A-3
- The conditioning method proved to have a significant influence on the reversible nature of the effects identified under temperature and RH.
- The temperature and RH conditions at which small scale impact testing is performed, together with the conditioning method used, should be considered when interpreting and comparing impact test results.
- Way forward: consolidation of these findings on:
 - a broader range of materials
 - a broader range of temperature and RH
 - how the conditioning method affects the morphology of the samples

Supporting Munitions Safety

Questions?

