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Introduction

* ARA works with the USAAF on both high- &
fidelity modeling and testing of \Qo!’
penetrating munitions. . -

* Penetrating warheads may deflagrate
during deployment, leading to
premature failure

* Non-shock induced void collapse is an
initiation source of concern 12

* This work utilizes test data to build the
foundation for predictive modeling of void
collapse-initiated deflagration risk
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Background: Explosive Voids

M pioevexray * Cast Cured Plastic Bonded Explosives (PBXs)

are susceptible to formation of gas filled
pockets — “voids”

* Voids in penetrators are subjected to non-
shock loads, which can result in deflagration!(1]

* Explosive in this study:
* Aluminized, RDX based
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Background: Mechanical Insult Testing

* ARA developed two novel tests to study void-collapse-induced
deflagration events [2]:

VIPER LIGER
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Background: Mechanical Insult Testing

* This work focuses on data from VIPER testing:

VIPER

Visual Insight into Penetrator Explosive Risk
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Polycarbonate
viewing window
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Capabilities:

* 5.5 KSI peak
pressures

* High speed
video

+ High visibility of
void collapse
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Background: Pressure-Duration Domain

* Pressure pulses in the charge of penetrating munitions
typically have a half-sine or haversine shape
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Explosive 1 (E1) Pressure-Duration Diagram
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pressure-duration diagrams.
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Background: Quench and Sustain

* Visible thermal ignition is not enough to cause deflagration.
* Quench — Reactions that extinguish over time
* Self Sustaining — Violent reactions that lead to deflagration

Explosive 1 (E1) Pressure-Duration Diagram
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A quench-sustain threshold may exist

in the pressure-duration domain.
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Background: Previous Work

* Image processing used to determine void compression
ratios

* Compression ratio used for ideal gas temperature
estimates under adiabatic compression!3!

Explosive 1 (E1) Pressure Load vs. Est. Temperature
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Background: Mechanical-Thermal
Relationship

Explosive 1 (E1) Pressure Load vs. Est. Temperature
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Development of an Ignition Risk Model ﬁr
\! . y. ﬁ,& w\‘;\%\m

O
ey g e

* Testing with the VIPER apparatus has shown that void defects
show visible signs of ignition at low pressures; around 4.5 KSI

* Can a model be developed to explain thermal ignition of voids
in the pressure-duration domain?

Notional Example
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Can an ignition risk threshold be

developed using the Arrhenius

> Kinetic model?
Pulse Duration
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Model Development: Relationships

E
T(T) = e [Tn_Z’] P(t) Temperature T(t)
1 A

Explosive 1 (E1) Pressure Load vs. Est. Temperature

1200 Sizes x L
—— 0.25".R?=0.96 &
"] 0.375",R? = 0.94
I E 1000 | g~ 0.5%,R?=0.87 ¢
-2 - 10".R¥=0.98 XX g 5 X o X
@ rp)=ca+pr =g
& = 2020 " - A% X " Exp.
T .| M Pressure
= 600 X 5ex . ® .0
1., x x % > ‘e
2 % T
400 3
I ™
@ r@ =P, sin(wt) > ¢
Applied Pressu re (PSI)
Time to Reaction at Current Void Temp.
10°
By substitution:
103 4
En —7! 5
T(t) — ea+,8Pmsm(a)t) & ]
£
F 101
1073

T T T T T T
@ HRH 0.000 0.002 0.004 0.006 0.008 0.010 11

Time (s)



: ) INNOVATIVE SOLUTIONS TO COMPLEX PROBLEMS

Model Development: Relationships
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Ignition Risk Model

* Risk model solution was developed computationally:

1 E
Pm(w) = = — —-a
Bsin <%2) [ln (%) +In (4 5 7T) +Z'
Example Ignition Risk Model .
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Model Validation Data: Void Side Effect

* A body of VIPER test data can
be used to test the efficacy of
the ignition risk model:

* This explosive exhibited a
void size dependent
temperature effect.

* This data was not explicitly
used in model development.

Model does a decent job of

predicting pulses that will ignite
voids.
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Quench-Sustain

* Recall, thermal ignition does not imply deflagration:

* Quench — Reactions that extinguish over time

* Self Sustaining — Violent reactions that lead to deflagration

Explosive 1 (E1) Pressure-Duration Diagram
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Can we also find a quench-sustain threshold?

o(T) = el 77
@rpp) = a+ppP

@ r(t) = P, sin(wt)
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Notional Quench-Sustain: Heat Transfer

Explosive 1 (E1) Pressure-Duration Diagram
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Conclusions

* We are testing PBXs for void-collapse-induced deflagration using
novel test hardware.

* Test data is being used to understand the factors that lead to
deflagration:

* Thermal (visible) ignition data used to develop a void ignition risk
model.

 Analytical/FEM models are being developed to understand what
causes a self-sustaining vs. quenching reactions.
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